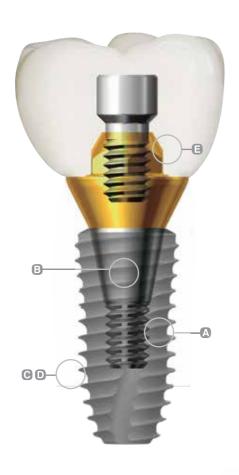


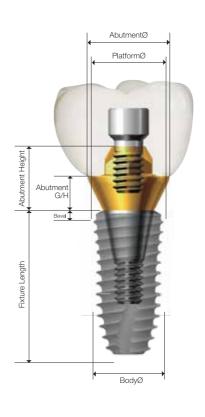
CONTENTS

Introduction	
S.L.A. Surface	04
SuperLine Characteristics	06
SuperLine Color Coding by Diameter	08
SuperLine Fixture	09
Surgical Components	
Cover Screw Healing Abutment	11 12
Scan Body	13
Scan Body	10
Prosthetic Procedure 1	
Dual / Combi Abutment - Abutment Level Impression	14
Combi Abutment	15
Dual Abutment[Hex]	16
Dual Abutment[Non-hex]	17
Abutment Level Impression Components	18
Restorative Kit	19
Prosthetic Procedure 2	
Dual / Custom / Dual Milling / Angled / Direct-Casting /	
Metal-Casting / Temporary (Plastic & Ti) Abutment	
- Fixture Level Impression	20
Fixture Level Impression Components	21
Custom Abutment	23
Titanium Abutment Blank	24
Dual Milling Abutment [Ti-G4]	25
Dual Milling Abutment [Ti-G4]	26
Angled Abutment[Ti-G4 / 15°]	27
Angled Abutment[Ti-G4 / 25°]	28
Metal-Casting Abutment	29
Temporary Abutment	30
Prosthetic Procedure 3	31
Screw Abutment - Abutment Level Impression	31
Screw Abutment	32
Angled Screw Abutment	33
Screw Abutment Impression Components	34
Prosthetic Procedure 4 Overdenture Procedure	
- Positioner / Mini Ball / Magnetic Attachment	38
Positioner	39
Mini Ball Attachment	41
Magnetic Attachment (Dome Type)	42
Magnetic Attachment (Flat Type)	43
(of March 1

Instruments

Surgical Kit (UXIF)	4
Surgical Kit (USNF)	4
Surgical Kit (UXSF)	40
Digital Guide Full Kit	4
Surgical Kit (UXIFN)	48
Surgical Kit (XSIF)	49
Drill Stopper Kit	50
Drill	5
Stopper	5
Instruments	50
Dentium Advanced Sinus Kit (DASK)	59
Sinus Bur Kit / Sinus Kit	6
Dask / Sinus Bur Kit / Sinus Kit	6
Dask Simple	6
Ridge Spreader Kit	6
Osteotome Kit	6
Trephire Kit	6
Prosthetic Kit	6
Planning Kit	6
Prosthectic and Laboratory Instrument	7
Help Kit	7:





SuperLine Characteristics

"Immediate Implantation with Excellent Bone Response"

- · Higher stabilization in extraction socket
- · Early loading in upper posterior
- · Harmony with anatomy
- · Sharp & fast insertion

Selection Guideline

Ideal emergence profile for each tooth

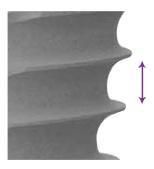
SuperLine Characteristics

A Double-threaded Design & Extended Cutting Edge

- · Improved self-tapping ability
- · Allows more control over the depth of fixture placement
- · Alleviates the occurrence of over-torque during placement in dense bone
- · Sharpened thread design promotes better initial stability in soft bone
- \cdot Easy & fast insertion can be done due to double threaded straight body design

B Biological Connection

- The conical hex connection between implant and abutment interface ensures hermetic sealing.
- The biologic connection distributes the load to the fixture evenly. Therefore it helps minimize micro-movement and marginal bone loss.
- · All implant diameters share the same internal hex.


C Tapered Design

- Tapered design may harmonize with surrounding bone anatomically.
- · An ideal design for greater stability during sinus surgeries.

Osseointegration

 The greater distance between the threads may promote early osseointegration

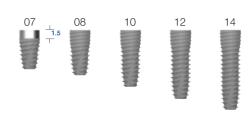
E Prosthesis

- · One abutment screw fits all abutments and fixture platforms.
- · Single abutment connection is used for all implant diameters.
- · One hex screw driver fits all abutment screws

SuperLine Color Coding by Diameter

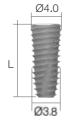
Color Coding by Diameter

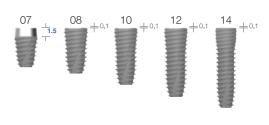
	• Cover screw is not included.							(Unit: mm)
Platform	Сар	Color	Yellow	Green	Blue	Red	Orange	Violet
	Supe	ture erLine nt Free)						
	PlatformØ	Fixture Platform Diameter	3.6	4.0	4.5	5.0	6.0	7.0
	BodyØ	Fixture Body Diameter	3.4	3.8	4.3	4.8	5.0	5.8
	Bevel	L:7 Fixture Bevel Height	1.5	1.5	1.5	1.5	1.5	1.5
	Bevel	L:8,10, 12,14 Fixture Bevel Height	0	0.1	0.3	0.4	0.7	1.0


SuperLine Fixture

Unit: mm, Scale 1:1.5/mm

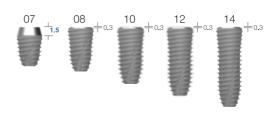
Platform Ø3.6 | Body Ø3.4


L	Art. No.
7	FXS 36 07
8	FXS 36 08
10	FXS 36 10
12	FXS 36 12
14	FXS 36 14

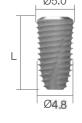


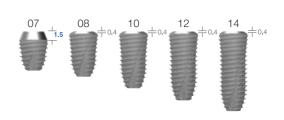
Platform Ø4.0 | Body Ø3.8

L	Art. No.
7	FXS 40 07
8	FXS 40 08
10	FXS 40 10
12	FXS 40 12
14	FXS 40 14



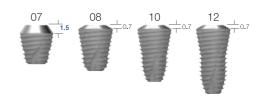
Platform Ø4.5 | Body Ø4.3


L	Art. No.
7	FXS 45 07
8	FXS 45 08
10	FXS 45 10
12	FXS 45 12
14	FXS 45 14



Platform Ø5.0 | Body Ø4.8

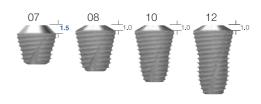
L	Art. No.
7	FXS 50 07
8	FXS 50 08
10	FXS 50 10
12	FXS 50 12
14	FXS 50 14


SuperLine Fixture

Unit: mm, Scale 1: 1.5 / mm

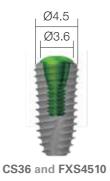
Platform Ø6.0 | Body Ø5.0

L	Art. No.
7	FXS 60 07
8	FXS 60 08
10	FXS 60 10
12	FXS 60 12



Platform Ø7.0 | Body Ø5.8

L	Art. No.
7	FXS 70 07
8	FXS 70 08
10	FXS 70 10
12	FXS 70 12



Cover Screw

• Single use only

Unit: mm, Scale 1: 1.5 / mm

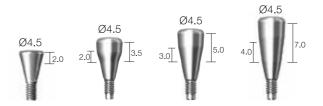
Color: Green

Healing Abutment

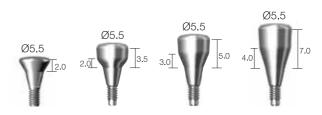
Unit: mm, Scale 1:1.5/mm

**Hex driver: Use no more than 5N·cm torque when screwing a cover screw to a fixture.
If hex is worn, slot on the head of the product can be used to rotate it.

Healing Abutment


Diameter Ø4.0

G/H	Н	Art. No.
2.0	2.0	HAB 40 20 20 L
2.0	3.5	HAB 40 20 35 L
3.0	5.0	HAB 40 30 50 L
4.0	7.0	HAB 40 40 70 L


Diameter Ø4.5

G/H	Н	Art. No.
2.0	2.0	HAB 45 20 20 L
2.0	3.5	HAB 45 20 35 L
3.0	5.0	HAB 45 30 50 L
4.0	7.0	HAB 45 40 70 L

Diameter Ø5.5

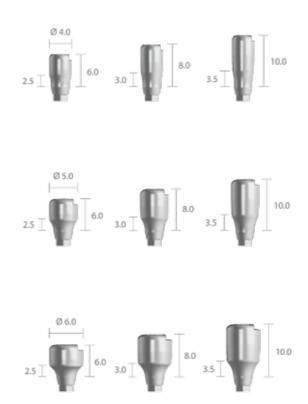
G/H	Н	Art. No.
2.0	2.0	HAB 55 20 20 L
2.0	3.5	HAB 55 20 35 L
3.0	5.0	HAB 55 30 50 L
4.0	7.0	HAB 55 40 70 L

Diameter Ø6.5

G/H	Н	Art. No.
2.0	2.0	HAB 65 20 20 L
2.0	3.5	HAB 65 20 35 L
3.0	5.0	HAB 65 30 50 L
4.0	7.0	HAB 65 40 70 L

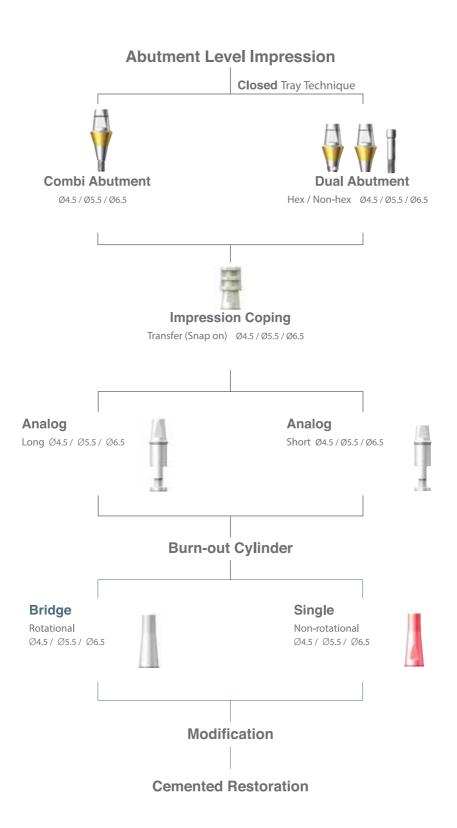
Diameter Ø7.5 / 8.5 / 9.5

G/H	Н	Art. No.
3.0	5.0	HAB 75 30 50 L
3.0	5.0	HAB 85 30 50 L
3.0	5.0	HAB 95 30 50 L


Scan Body

- · Single use only, provided sterile
- · Tissue contour design
- · Abutment screw included
- · Material: Ti-6Al-4V ELI
- · NOTE: Use no more than 10 N·cm of torque when tightening the Scan body

Unit: mm Scale 1.5:1


			_	Unit: mm Scale 1.5:1
Diameter	G/H	Height	Type	Ref. No.
	2.5	6.0	Hex	IHAB 40 06 TH
	2.5	6.0	Non-hex	IHAB 40 06 TN
Ø 4.0	3.0	8.0	Hex	IHAB 40 08 TH
10 4.0	3.0	8.0	Non-hex	IHAB 40 08 TN
	3.5	10.0	Hex	IHAB 40 10 TH
	3.5	10.0	Non-hex	IHAB 40 10 TN
	2.5	6.0	Hex	IHAB 50 06 TH
	2.5	6.0	Non-hex	IHAB 50 06 TN
0.50	3.0	8.0	Hex	IHAB 50 08 TH
Ø 5.0	3.0	8.0	Non-hex	IHAB 50 08 TN
	3.5	10.0	Hex	IHAB 50 10 TH
	3.5	10.0	Non-hex	IHAB 50 10 TN
	2.5	6.0	Hex	IHAB 60 06 TH
	2.5	6.0	Non-hex	IHAB 60 06 TN
	3.0	8.0	Hex	IHAB 60 08 TH
Ø 6.0	3.0	8.0	Non-hex	IHAB 60 08 TN
	3.5	10.0	Hex	IHAB 60 10 TH
	3.5	10.0	Non-hex	IHAB 60 10 TN

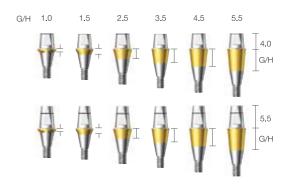
Prosthetic Procedure 1

Impression Technique and Restoration Selection

Dual / Combi Abutment

Combi Abutment

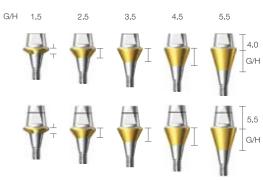
Unit: mm, Scale 1:1/mm


CAB5535SL and FXS4510

CAB5535L and FXS4510

Diameter Ø4.5

G/H	Type	Art. No.	Туре	Art. No
1.0		CAB 45 10 SL	Long	CAB 45 10 L
1.5		CAB 45 15 SL		CAB 45 15 L
2.5	Short	CAB 45 25 SL		CAB 45 25 L
3.5		CAB 45 35 SL		CAB 45 35 L
4.5		CAB 45 45 SL		CAB 45 45 L
5.5		CAB 45 55 SL		CAB 45 55 L


Diameter Ø5.5

G/H	Type	Art. No.	Туре	Art. No
1.5		CAB 55 15 SL		CAB 55 15 L
2.5		CAB 55 25 SL		CAB 55 25 L
3.5	Short	CAB 55 35 SL	Long	CAB 55 35 L
4.5		CAB 55 45 SL		CAB 55 45 L
5.5		CAB 55 55 SL		CAB 55 55 L

Diameter Ø6.5

G/H	Type	Art. No.	Type	Art. No
1.5		CAB 65 15 SL		CAB 65 15 L
2.5		CAB 65 25 SL		CAB 65 25 L
3.5	Short	CAB 65 35 SL	Long	CAB 65 35 L
4.5		CAB 65 45 SL		CAB 65 45 L
5.5		CAB 65 55 SL		CAB 65 55 L

Dual Abutment [Hex]

• Abutment screw is included.

Unit: mm, Scale 1:1.5/mm

DAB5535HL and FXS4510

Diameter Ø4.5 | Hex

Art. No.
DAB 45 10 H L
DAB 45 15 H L
DAB 45 25 H L
DAB 45 35 H L
DAB 45 45 H L
DAB 45 55 H L

Diameter Ø5.5 | Hex

Art. No.
DAB 55 15 H L
DAB 55 25 H L
DAB 55 35 H L
DAB 55 45 H L
DAB 55 55 H L

Diameter Ø6.5 | Hex

Art. No.
DAB 65 15 H L
DAB 65 25 H L
DAB 65 35 H L
DAB 65 45 H L
DAB 65 55 H L

※Note: 1) It is recommended to keep the torque level at 25~30 N⋅cm to tighten the Dual abutment with fixture.

Dual Abutment [Non-hex]

• Abutment screw is included.

Unit: mm, Scale 1:1.5/mm

DAB5535NL and FXS4510

Diameter Ø4.5 | Non-hex

G/H	Art. No.
1.0	DAB 45 10 N L
1.5	DAB 45 15 N L
2.5	DAB 45 25 N L
3.5	DAB 45 35 N L
4.5	DAB 45 45 N L
5.5	DAB 45 55 N L

Diameter Ø5.5 | Non-hex

G/H	Art. No.
1.5	DAB 55 15 N L
2.5	DAB 55 25 N L
3.5	DAB 55 35 N L
4.5	DAB 55 45 N L
5.5	DAB 55 55 N L

Diameter Ø6.5 | Non-hex

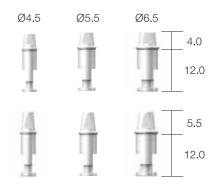
G/H	Art. No.
1.5	DAB 65 15 N L
2.5	DAB 65 25 N L
3.5	DAB 65 35 N L
4.5	DAB 65 45 N L
5.5	DAB 65 55 N L

Abutment Level Impression Components

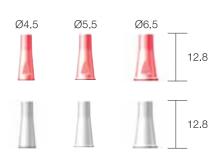
Unit: mm, Scale 1:1/mm

Comfort Cap | Snap on

Type	Diameter	Art. No.
	Ø 4.5	CCC 45 CS
Short	Ø 5.5	CCC 55 CS
	Ø 6.5	CCC 65 CS
	Ø 4.5	CCC 45 C
Long	Ø 5.5	CCC 55 C
	Ø 6.5	CCC 65 C


Impression Coping

Diameter	Art. No.
Ø 4.5	CIC 45 L
Ø 5.5	CIC 55 L
Ø 6.5	CIC 65 L

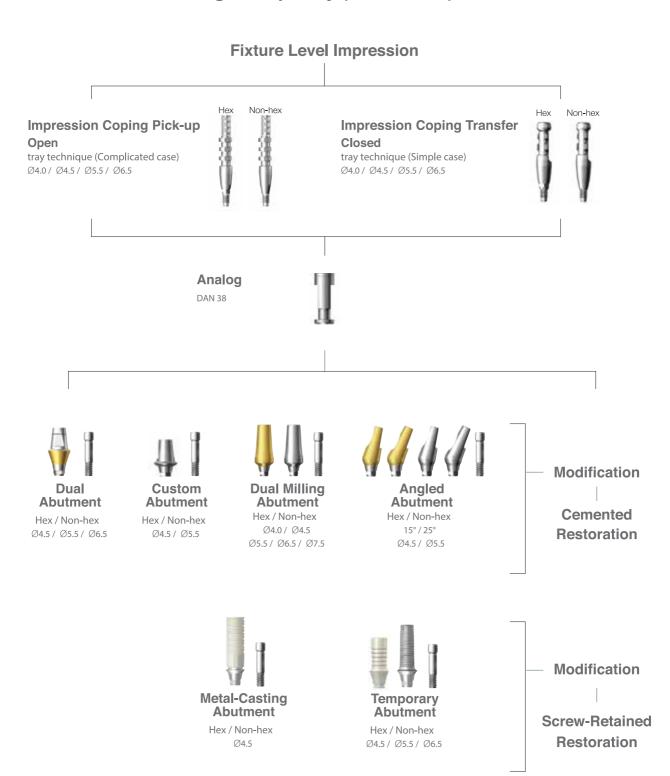

Lab Analog

Type	Diameter	Art. No.
	Ø 4.5	CAN 45 S L
Short	Ø 5.5	CAN 55 S L
	Ø 6.5	CAN 65 S L
	Ø 4.5	CAN 45 L L
Long	Ø 5.5	CAN 55 L L
	Ø 6.5	CAN 65 L L

Burn-out Cylinder

Туре	Diameter	Art. No.
	Ø 4.5	CBC 45 S L
Single	Ø 5.5	CBC 55 S L
	Ø 6.5	CBC 65 S L
	Ø 4.5	CBC 45 B L
Bridge	Ø 5.5	CBC 55 B L
	Ø 6.5	CBC 65 B L

Restorative Kit

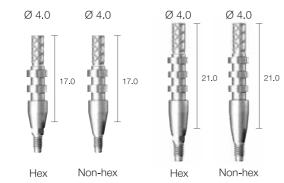

Combi & Dual Abutment

Art. No	Lab. Components				
7 (11, 140	Comfort Cap	Impression Coping	Analog	Burn-ou	t Cylinder
XSDAB 45 S	CCC 45 CS	CIC 45 L	CAN 45 SL	CBC 45 SL	CBC 45 BL
XSDAB 45	CCC 45 C	010 43 L	CAN 45 LL	OBO 43 3E	ODO 43 BL
XSDAB 55 S	CCC 55 CS	CIC 55 L	CAN 55 SL	CBC 55 SL	CBC 55 BL
XSDAB 55	CCC 55 C	010 00 L	CAN 55 LL	OBO 33 0E	ODO 33 BL
XSDAB 65 S	CCC 65 CS	CIC 65 L	CAN 65 SL	CBC 65 SL	CBC 65 BL
XSDAB 65	CCC 65 C	010 00 L	CAN 65 LL	020 00 0E	ODO OO BE

Prosthetic Procedure 2

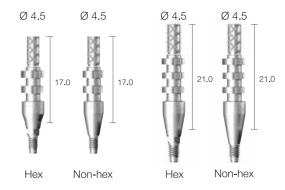
Impression Technique and Restoration Selection

Dual / Custom / Dual Milling / Angled / Metal-Casting / Temporary (Plastic & Ti) Abutment

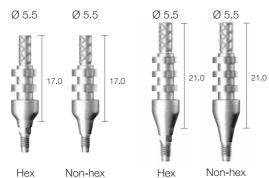

Fixture Level Impression Components

• Impression coping screw is included with Impression coping.

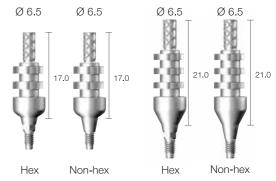
Unit: mm, Scale 1:1.5/mm


Impression Coping Pick-up Ø4.0

Size	Туре	Art. No.
Short	Hex	DPU 40 11 H L
Short	Non-hex	DPU 40 11 N L
Long	Hex	DPU 40 15 H L
Long	Non-hex	DPU 40 15 N L


Impression Coping Pick-up Ø4.5

Size	Type	Art. No.
Short	Hex	DPU 45 11 H L
Short	Non-hex	DPU 45 11 N L
Long	Hex	DPU 45 15 H L
Long	Non-hex	DPU 45 15 N L


Impression Coping Pick-up Ø5.5

Туре	Art. No.
Hex	DPU 55 11 H L
Non-hex	DPU 55 11 N L
Hex	DPU 55 15 H L
Non-hex	DPU 55 15 N L
	Non-hex Hex

Impression Coping Pick-up Ø6.5

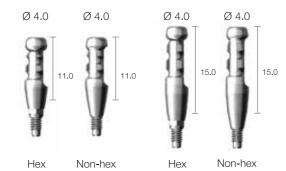
Size	Type	Art. No.
Short	Hex	DPU 65 11 H L
Short	Non-hex	DPU 65 11 N L
Long	Hex	DPU 65 15 H L
Long	Non-hex	DPU 65 15 N L

Impression Coping Pick-up Screw

Size	Art. No.
Short	DPS 11
Long	DPS 15

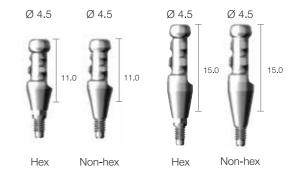
Analog

Application (BodyØ)	Art. No.
3.4 / Ø3.8 / Ø4.3 / Ø4.8 / Ø5.8	DAN38

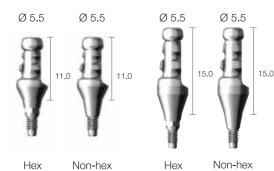

Fixture Level Impression Components

• Impression coping screw is included with Impression coping.

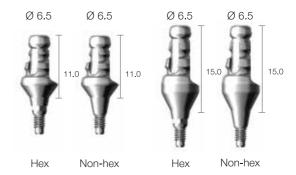
Unit: mm, Scale 1: 1.5 / mm


Impression Coping Transfer Ø4.0

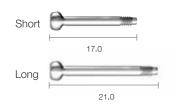
Size	Type	Art. No.
Short	Hex	DTF 40 11 H L
Short	Non-hex	DTF 40 11 N L
Long	Hex	DTF 40 15 H L
Long	Non-hex	DTF 40 15 N L


Impression Coping Transfer Ø4.5

Size	Type	Art. No.
Short	Hex	DTF 45 11 H L
Short	Non-hex	DTF 45 11 N L
Long	Hex	DTF 45 15 H L
Long	Non-hex	DTF 45 15 N L


Impression Coping Transfer Ø5.5

Size	Type	Art. No.
Short	Hex	DTF 55 11 H L
Short	Non-hex	DTF 55 11 N L
Long	Hex	DTF 55 15 H L
Long	Non-hex	DTF 55 15 N L


Impression Coping Transfer Ø6.5

Size	Type	Art. No.
Short	Hex	DTF 65 11 H L
Short	Non-hex	DTF 65 11 N L
Long	Hex	DTF 65 15 H L
Long	Non-hex	DTF 65 15 N L

Impression Coping Transfer Screw

Size	Art. No.
Short	DTS 11
Long	DTS 15

Analog | for SuperLine and Implantium

Application (BodyØ)	Art. No.
3.4 / Ø3.8 / Ø4.3 / Ø4.8 / Ø5.8	DAN38

Custom Abutment

• Abutment screw is included.

Unit: mm, Scale 1:1.5/mm

Diameter Ø4.5

G/H	Type	Art. No.
0.5	Hex	CDAB 45 05 H
0.5	Non-hex	CDAB 45 05 N
1.5	Hex	CDAB 45 15 H
1.5	Non-hex	CDAB 45 15 N

Diameter Ø5.5

G/H	Туре	Art. No.
1.0	Hex	CDAB 55 10 H
1.0	Non-hex	CDAB 55 10 N
2.0	Hex	CDAB 55 20 H
2.0	Non-hex	CDAB 55 20 N

Titanium Abutment Blanks

Unit: mm, Scale 1:0.8

1

• Two abutment screws included

Material : Ti-6Al-4V ELI

Diameter	Туре	Ref. No.
Ø 10.0	Hex Non-hex	CMAB 10 HAL CMAB 10 NA

Diameter	Туре	Ref. No.
Ø 14.0	Hex Non-hex	CMAB 14 HAL CMAB 14 NA

Diameter	Туре	Ref. No.
~	Hex	CMAB 15 HAL
Ø 15.0	Non-hex	CMAB 15 NA

Ø 15.0

Hex

Non-hex

Ø 15.0

Dual Milling Abutment [Ti-G4]

• Abutment screw is included.

Unit:mm, Scale 1: 1.5 / mm

Diameter Ø4.0

G/H	Type	Art. No.
1.0	Hex	DAB 40 105 H L
1.0	Non-hex	DAB 40 105 N L

Diameter Ø4.5

G/H	Type	Art. No.
1.5	Hex	DAB 45 156 H L
1.5	Non-hex	DAB 45 156 N L

Diameter Ø5.5

G/H	Туре	Art. No.
1.5	Hex	DAB 55 157 H L
1.5	Non-hex	DAB 55 157 N L
2.5	Hex	DAB 55 257 H L
2.5	Non-hex	DAB 55 257 N L

Dual Milling Abutment [Ti-G4]

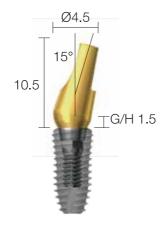
• Abutment screw is included.

Unit:mm, Scale 1: 1.5 / mm

Diameter Ø6.5

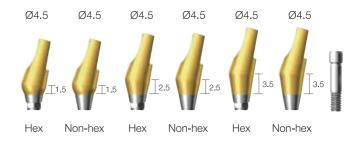
G/H	Туре	Art. No.
1.5	Hex	DAB 65 158 H L
1.5	Non-hex	DAB 65 158 N L
2.5	Hex	DAB 65 258 H L
2.5	Non-hex	DAB 65 258 N L
3.5	Hex	DAB 65 358 H L
3.5	Non-hex	DAB 65 358 N L

Diameter Ø7.5

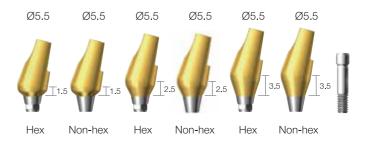

G/H	Туре	Art. No.
2.5	Hex	DAB 75 259 H L
2.5	Non-hex	DAB 75 259 N L
3.5	Hex	DAB 75 359 H L
3.5	Non-hex	DAB 75 359 N L

Angled Abutment [Ti-G4 / 15°]

• Abutment screw is included.

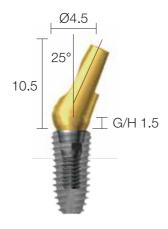

Unit: mm, Scale 1:1.5/mm

AAB154515HL and **FXS4510**


Diameter Ø4.5 | Angled 15°

G/H	Type	Art. No.
1.5	Hex	AAB 15 45 15 H L
1.5	Non-hex	AAB 15 45 15 N L
2.5	Hex	AAB 15 45 25 H L
2.5	Non-hex	AAB 15 45 25 N L
3.5	Hex	AAB 15 45 35 H L
3.5	Non-hex	AAB 15 45 35 N L

Diameter Ø5.5 | Angled 15°

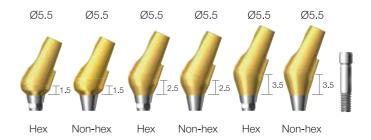

G/H	Type	Art. No.	
1.5	Hex	AAB 15 55 15 H L	
1.5	Non-hex	AAB 15 55 15 N L	
2.5	Hex	AAB 15 55 25 H L	
2.5	Non-hex	AAB 15 55 25 N L	
3.5	Hex	AAB 15 55 35 H L	
3.5	Non-hex	AAB 15 55 35 N L	

Angled Abutment [Ti-G4 / 25°]

• Abutment screw is included.

Unit: mm, Scale 1:1.5/mm

AAB254515HL and **FXS4510**


Diameter Ø4.5 | Angled 25°

G/H	Type	Art. No.
1.5	Hex	AAB 25 45 15 H L
1.5	Non-hex	AAB 25 45 15 N L
2.5	Hex	AAB 25 45 25 H L
2.5	Non-hex	AAB 25 45 25 N L
3.5	Hex	AAB 25 45 35 H L
3.5	Non-hex	AAB 25 45 35 N L

Diameter Ø5.5 | Angled 25°

G/H	Type	Art. No.
1.5	Hex	AAB 25 55 15 H L
1.5	Non-hex	AAB 25 55 15 N L
2.5	Hex	AAB 25 55 25 H L
2.5	Non-hex	AAB 25 55 25 N L
3.5	Hex	AAB 25 55 35 H L
3.5	Non-hex	AAB 25 55 35 N L

Metal-Casting Abutment

RAB45CH and FXS4510

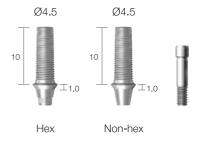
Metal-Casting Abutment | Co-Cr

G/H	Type	Art. No.
1.0	Hex	RAB 45 C H
1.0	Non-hex	RAB 45 C N

Temporary Abutment

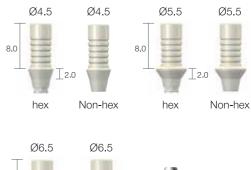
• Abutment screw is included.

Unit: mm, Scale 1:1.5/mm



RAB45THG and FXS4510

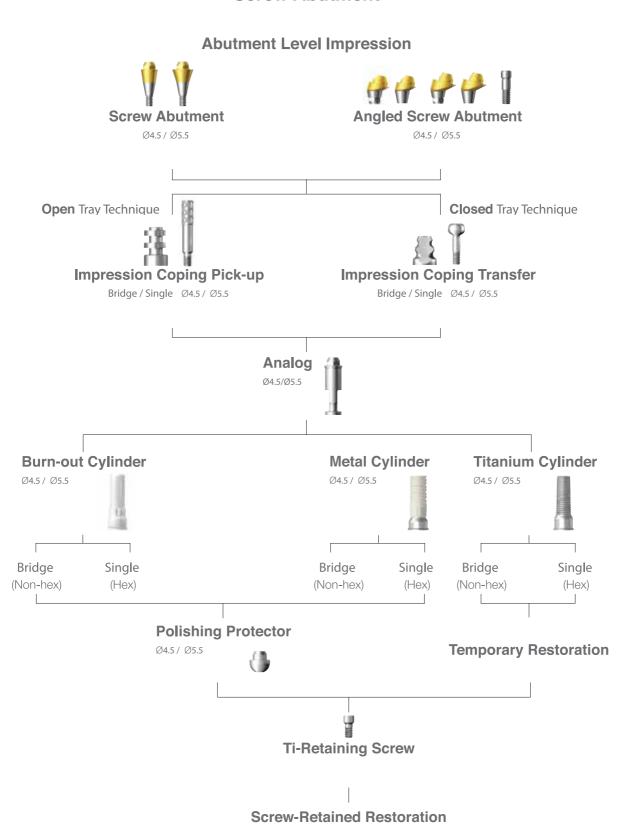
RAB4520PHL and FXS4510


Ti-Temporary Abutment

Diameter	G/H	Туре	Art. No.
Ø 4.5	1.0	Hex	RAB 45 TH G
Ø 4.5	1.0	Non-hex	RAB 45 T N G

Plastic Temporary Abutment

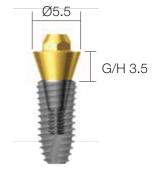
Diameter	G/H	Type	Art. No.
Ø 4.5	2.0	hex	RAB 45 20 P H L
Ø 4.5	2.0	Non-hex	RAB 45 20 P N L
Ø 5.5	2.0	hex	RAB 55 20 P H L
Ø 5.5	2.0	Non-hex	RAB 55 20 P N L
Ø 6.5	2.0	hex	RAB 65 20 P H L
Ø 6.5	2.0	Non-hex	RAB 65 20 P N L



Note: 1) It is recommended to keep the torque level at 25~30 N⋅cm to tighten the temporary abutment with fixture.

Prosthetic Procedure 3

Impression Technique and Restoration Selection


Screw Abutment

Screw Abutment

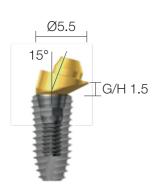
Unit: mm, Scale 1: 1.5 / mm

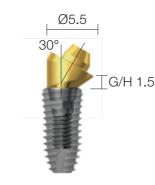
SAB5535L and FXS4510

Diameter Ø4.5

G/H	Art. No.
1.0	SAB45 10 L
1.5	SAB45 15 L
2.5	SAB45 25 L
3.5	SAB45 35 L
4.5	SAB45 45 L
5.5	SAB45 55 L

Diameter Ø5.5


G/H	Art. No.
1.5	SAB55 15 L
2.5	SAB55 25 L
3.5	SAB55 35 L
4.5	SAB55 45 L
5.5	SAB55 55 L



※Note: 1) It is recommended to keep the torque level at 25~30 N⋅cm to tighten the screw abutment with fixture.

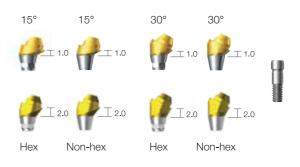
Angled Screw Abutment

Unit: mm, Scale 1: 1.5 / mm

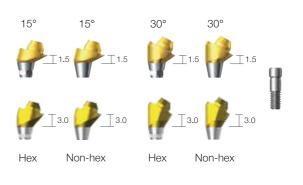
ASA55151518N and FXS4510

ASA55301518N and FXS4510

Delivery Holder


Ti-Delivery Holder

ASAH


Angled Screw Abutment Ø4.5

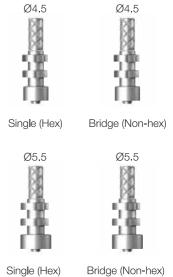
Type	Art. No.
	7
Hex	ASA 45 15 10 18 H
Non-hex	ASA 45 15 10 18 N
Hex	ASA 45 30 10 18 H
Non-hex	ASA 45 30 10 18 N
Hex	ASA 45 15 20 18 H
Non-hex	ASA 45 15 20 18 N
Hex	ASA 45 30 20 18 H
Non-hex	ASA 45 30 20 18 N
	Non-hex Hex Non-hex Hex Non-hex Hex

Angled Screw Abutment Ø5.5

G/H	Type	Art. No.
1.5	Hex	ASA 55 15 15 18 H
1.5	Non-hex	ASA 55 15 15 18 N
1.5	Hex	ASA 55 30 15 18 H
1.5	Non-hex	ASA 55 30 15 18 N
3.0	Hex	ASA 55 15 30 18 H
3.0	Non-hex	ASA 55 15 30 18 N
3.0	Hex	ASA 55 30 30 18 H
3.0	Non-hex	ASA 55 30 30 18 N

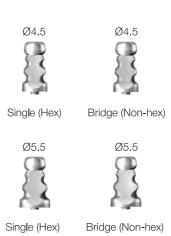
Angled Screw Abutment Screw

ASASC 20 23



Screw Abutment Impression Components

Unit: mm, Scale 1:1.5/mm


Impression Coping Pick-up

Diameter	Туре		Art. No.
Ø 4.5	Single	Hex	SPU 45 S L
Ø 4.5	Bridge	Non-hex	SPU 45 B L
Ø 5.5	Single	Hex	SPU 55 S L
Ø 5.5	Bridge	Non-hex	SPU 55 B L

Impression Coping Transfer

Diameter	Туре		Art. No.
Ø 4.5	Single	Hex	STF 45 S L
Ø 4.5	Bridge	Non-hex	STF 45 BL
Ø 5.5	Single	Hex	STF 55 S L
Ø 5.5	Bridge Non-hex		STF 55 BL

Impression Coping Screw

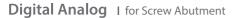
Type	Art. No.
Pick-up	SPS 09
Transfer	STS 09

Screw Abutment Components

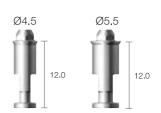
Scan Comfort Cap | for Screw Abutment

Diameter	Length	Туре	Ref. No.
Ø 4.5	F 0	Hex Non-hex	ISC 45 ST ISC 45 BT
Ø 5.5	5.0	Hex Non-hex	ISC 55 ST ISC 55 BT

[•] Ti-retaining screw included


Scan Comfort Cap | for Screw Abutment

Diameter	Length	Туре	Ref. No.
Ø 4.5	F 0	Hex Non-hex	ISC 45 SP ISC 45 BP
Ø 5.5	5.0	Hex Non-hex	ISC 55 SP ISC 55 BP


[•] Ti-retaining screw (SRS 18T) included

Analog

Diameter	Art. No.
Ø4.5	SAN 45 L
Ø 5. 5	SAN 55 L

Diameter	Art. No.
Ø 4.5	SAN 45 D
Ø 5.5	SAN 55 D

Polishing Protector

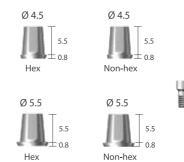
Diameter	Art. No.
Ø 4.5	SPP 45 L
Ø 5.5	SPP 55 L

Ti-Retaining Screw

SRS 18 T

Screw Abutment Impression Components

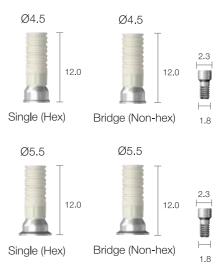
Temporary Cylinder | Ti-Cylinder


Diameter	Type		Art. No.
Ø 4.5	Single	Hex	STC 45 S G
Ø 4.5	Bridge	Non-hex	STC 45 B G
Ø 5.5	Single	Hex	STC 55 S G
Ø 5.5	Bridge	Non-hex	STC 55 B G

Ti-CylinderMaterial: Ti-6AL-4V ELI

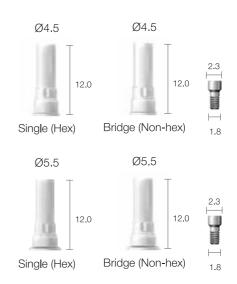
Diameter	Type	Art. No.
Ø 4.5	Hex	STA 45 S
	Non-hex	STA 45 B
Ø 5.5	Hex	STA 55 S
	Non-hex	STA 55 B

[•] Ti-retaining screw included



Screw Abutment Impression Components

Unit: mm, Scale 1:1.5/mm


Metal Cylinder | Co-Cr

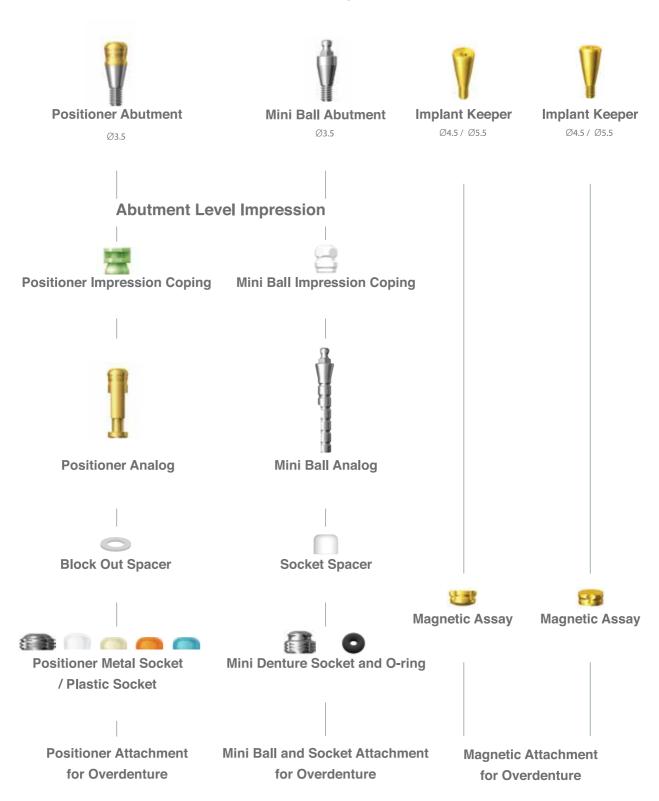
Diameter	Туре		Art. No.
Ø 4.5	Single	Hex	SGC 45 C S L
Ø 4.5	Bridge	Non-hex	SGC 45 C B L
Ø 5.5	Single	Hex	SGC 55 C S L
Ø5.5	Bridge	Non-hex	SGC 55 C B L

Burn-out Cylinder

Diameter	Type		Art. No.
Ø 4.5	Single	Hex	SBC 45 S L
Ø 4.5	Bridge	Non-hex	SBC 45 B L
Ø 5.5	Single	Hex	SBC 55 S L
Ø 5.5	Bridge	Non-hex	SBC 55 B L

Digital Analog

Implant platform Ø	Ref. No.	
All diameters	DAN 38 D	



Prosthetic Procedure 4

Impression Technique and Restoration Type

Overdenture Procedure

Positioner / Mini Ball / Magnetic Attachment

Positioner Abutment

Unit: mm, Scale 1:1.5/mm

FSMH and PAB3520 and FXS4510

Positioner Abutment

G/H	Art. No.
1.0	PAB 35 10
2.0	PAB 35 20
3.0	PAB 35 30
4.0	PAB 35 40
5.0	PAB 35 50
6.0	PAB 35 60
7.0	PAB 35 70

Positioner Impression Coping

Positioner Analog

PAN

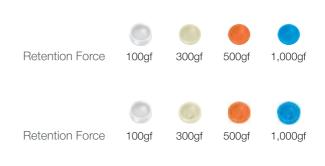
Note: 1) It is recommended to keep the torque level at 25~30 N⋅cm to tighten the positioner abutment with fixture.

Positioner

Unit: mm, Scale 1:1.5/mm

Positioner Socket Set

Art. No.	FSMHS(Tilting Type ±10°)
	FSMHSN(Non Tilting Type ±5°)


Positioner Metal Socket

Art. No.	FSMH

Positioner Plastic Socket

Application	Art. No.		
Tilting Type ±10°	MSHP (Blue) MSMP (Orange) MSLP (Ivory) MSOP (White)		
Non Tilting Type ±5°	MSHPN (Blue) MSMPN (Orange) MSLPN (Ivory) MSOP (White)		

Positioner Block Out Spacer

Positioner Core Tool

	Art. No.	XPCT
--	----------	------

Mini Ball Attachment

Unit: mm, Scale 1:1.5/mm

BPF3 and BAB352018 and FXS4510

Mini Ball Abutment

G/H	Art. No.
0	BAB 35 00 18
1.0	BAB 35 10 18
2.0	BAB 35 20 18
3.0	BAB 35 30 18
4.0	BAB 35 40 18
5.0	BAB 35 50 18

Mini Ball Impression Coping

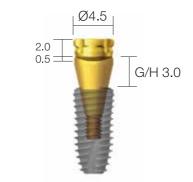
GICA

Mini Ball Analog

BANL

Socket Spacer

Art. No. GBIC3L GBIC2L


Female Socket

Art. No.	BPF3 (300~500gf) BPF2 (500~700gf)
----------	--------------------------------------

Magnetic Attachment [Dome Type]

Unit: mm, Scale 1:1.5/mm

MGT4520D and MKP4530D and FXS4510

Magnetic Assay

Application	Diameter	Н	Art. No.
MKP45D	Ø 4.5	2.0	MGT 45 20 D
MKP55D	Ø 5.5	2.0	MGT 55 20 D

6.0

Implant Keeper Diameter Ø4.5

G/H	Art. No.							
1.0	MKP 45 10 D	G/H	1.0	2.0	3.0	4.0	5.0	
2.0	MKP 45 20 D		(G)I	(G)	T T	Can T	T Company	
3.0	MKP 45 30 D		V	1	\ \	\ \	\J	
4.0	MKP 45 40 D			13	H	I	M	
5.0	MKP 45 50 D							
6.0	MKP 45 60 D							

Implant Keeper Diameter Ø5.5

G/H	Art. No.							
1.0	MKP 55 10 D	G/H	1.0	2.0	3.0	4.0	5.0	6.0
2.0	MKP 55 20 D	10	(%)I		(and			(Texa)
3.0	MKP 55 30 D		V	1	1			G/H
4.0	MKP 55 40 D		0	13	II.	1	M	M
5.0	MKP 55 50 D							
6.0	MKP 55 60 D							

Magnetic Attachment [Flat Type]

Unit: mm, Scale 1:1.5/mm

MGT4515 and MKP4530 and FXS4510

Magnetic Assay

Application	Diameter	Н	Art. No.
MKP45	Ø 4.5	1.5	MGT 45 15
MKP45	Ø 4.5	2.0	MGT 45 20
MKP55	Ø 5.5	1.5	MGT 55 15
MKP55	Ø 5.5	2.0	MGT 55 20

Ø4.5

1.5 ☐ Retention Force 400gf

Ø4.5

2.0 ☐ Retention Force 450gf

Ø5.5

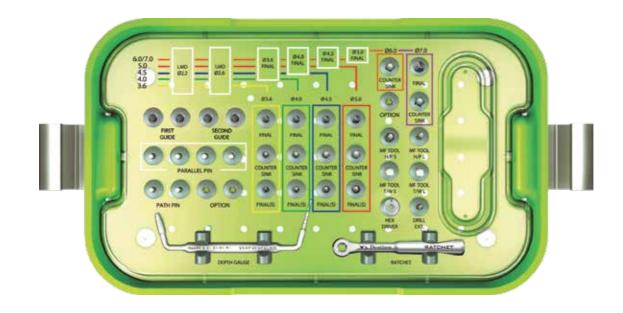
1.5 ☐ Retention Force 700gf

Ø5.5

2.0 ☐ Retention Force 750gf

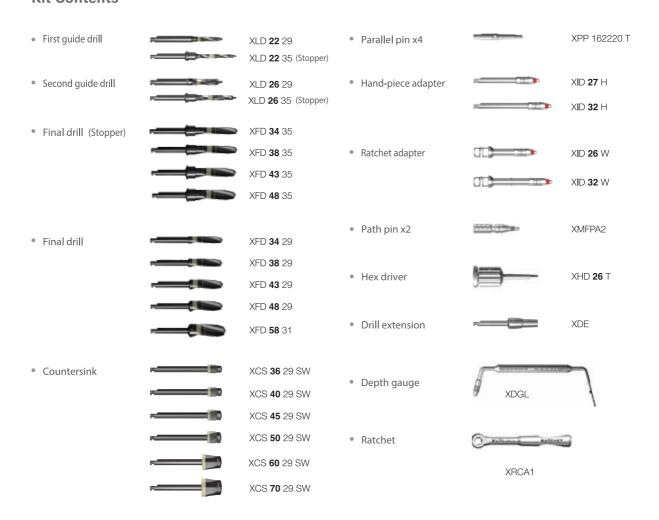
Implant Keeper Diameter Ø4.5

G/H	Art. No.
1.0	MKP 45 10
2.0	MKP 45 20
3.0	MKP 45 30
4.0	MKP 45 40
5.0	MKP 45 50
6.0	MKP 45 60

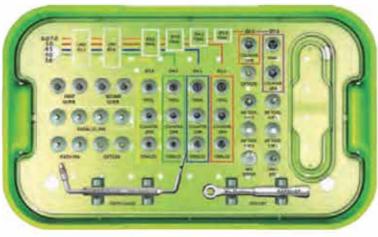


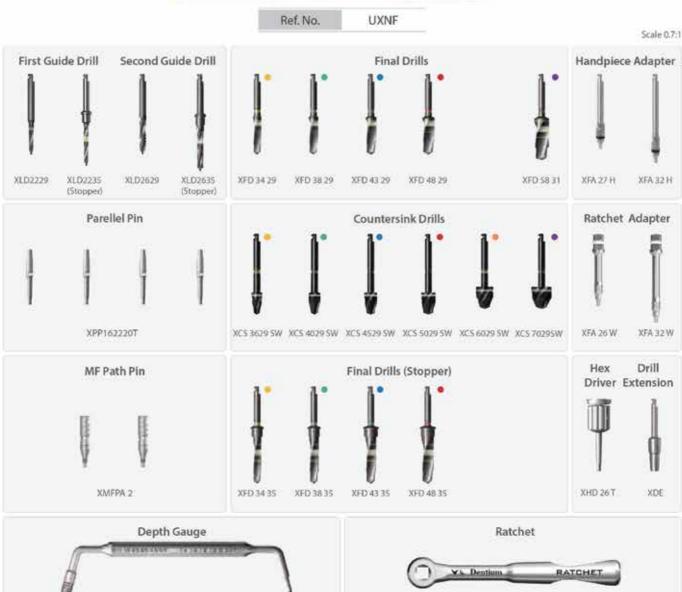
Implant Keeper Diameter Ø5.5

G/H	Art. No.
1.0	MKP 55 10
2.0	MKP 55 20
3.0	MKP 55 30
4.0	MKP 55 40
5.0	MKP 55 50
6.0	MKP 55 60



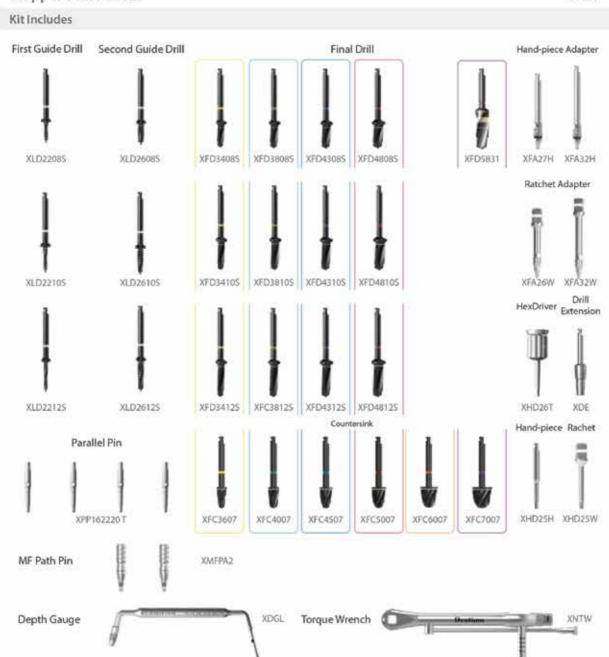
Surgical Kit [Full]




UXIF

Kit Contents

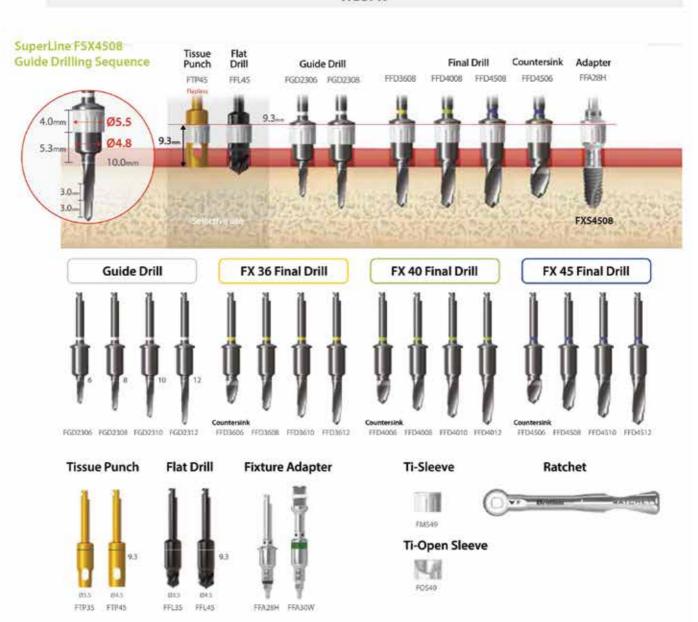
Surgical Kit [Full]



XRCA 1

Surgical Kit [Stopper Drill Full]

Stopper Drill Full Kit UXSF



Digital Guide | Full Kit for FX 36/40/45

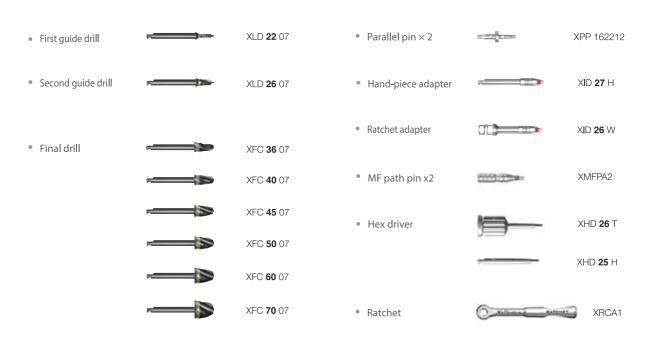

Unit: mm, Scale 1:1

XGSFK

Surgical Kit [Standard]

UXIFN

Kit Contents



Surgical Kit [Short Implant]

XSIK

Kit Contents

Drill Stopper Kit

XDS

Kit Contents

• Guide drill stopper / First, Second

• Stopper-first guide drill, second guide drill

• Final drill stopper / 34, 38

• Stopper- final drill / 34, 38

• Final drill stopper / 43, 48

• Stopper- final drill / 43, 48

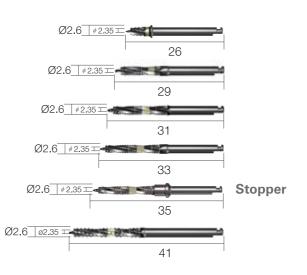
Unit: mm, Scale 1:1/mm

Guide Drill

Diameter	L	Art. No.
Ø1.5	20	XGD 15 20
Ø1.5	28	XGD 15 28

First Drill

Diameter	L	Art. No.
Ø 2.0	29	XFD 20 29
Ø 2.0	33	XFD 20 33


First Guide Drill

Diameter	L	Art. No.
Ø 2.2	26	XLD 22 07
Ø 2.2	29	XLD 22 29
Ø 2.2	31	XLD 22 31
Ø 2.2	33	XLD 22 33
Ø 2.2	35	XLD 22 35
Ø 2.2	41	XLD 22 41

Second Guide Drill

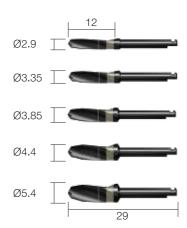
Diameter	L	Art. No.
Ø 2.6	26	XLD 26 07
Ø 2.6	29	XLD 26 29
Ø 2.6	31	XLD 26 31
Ø 2.6	33	XLD 26 33
Ø 2.6	35	XLD 26 35
Ø 2.6	41	XLD 26 41

Note: Drill speed 1,000rpm, 30~45N⋅cm with irrigation.

Unit: mm, Scale 1:1/mm

Pilot Drill

Diameter	L	Art. No.
Ø 3.0	30	XPD 20 30


Final Drill | For Short Implant

Diameter	L	Art. No.
Ø3.6	27	XFC 36 07
Ø 4.0	27	XFC 40 07
Ø 4.5	27	XFC 45 07
Ø 5.0	27	XFC 50 07
Ø 6.0	27	XFC 60 07
Ø 7.0	27	XFC 70 07

Final Drill | Length-29mm

Diameter	L	Art. No.
Ø 2.9	29	XFD 34 29
Ø 3.35	29	XFD 38 29
Ø 3.85	29	XFD 43 29
Ø 4.4	29	XFD 48 29
Ø 5.4	29	XFD 58 29SW

Final Drill | Length-31mm

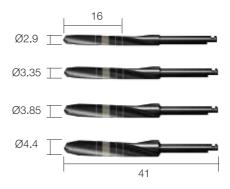
Diameter	L	Art. No.
Ø 2.9	31	XFD 34 31
Ø 3.35	31	XFD 38 31
Ø 3.85	31	XFD 43 31
Ø 4.4	31	XFD 48 31
Ø 5.4	31	XFD 58 31

*Note: Drill speed 1,000rpm, 30~45N·cm with irrigation.

Unit: mm, Scale 1:1/mm

Final Drill | Length-33mm

Diameter	L	Art. No.
Ø 2.9	33	XFD 34 33
Ø 3.35	33	XFD 38 33
Ø 3.85	33	XFD 43 33
Ø 4.4	33	XFD 48 33


Final Drill | Length-35mm| Stopper

Diameter	L	Art. No.
Ø 2.9	35	XFD 34 35
Ø 3.35	35	XFD 38 35
Ø 3.85	35	XFD 43 35
Ø 4.4	35	XFD 48 35

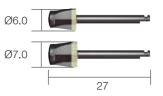
Final Drill | Length-41mm

Diameter	L	Art. No.
Ø 2.9	41	XFD 34 41
Ø 3.35	41	XFD 38 41
Ø 3.85	41	XFD 43 41
Ø 4.4	41	XFD 48 41

*Note: Drill speed 1,000rpm, 30~45N·cm with irrigation.

Unit: mm, Scale 1:1/mm

Harvest Drill | Length-35mn Stopper


Diameter	L	Art. No.
Ø 2.85	35	XFH 34 35
Ø 3.3	35	XFH 38 35
Ø 3.85	35	XFH 43 35
Ø 4.4	35	XFH 48 35

Countersink

Diameter	L	Art. No.
Ø3.6	29	XCS 36 29 SW
Ø 4.0	29	XCS 40 29 SW
Ø 4.5	29	XCS 45 29 SW
Ø 5.0	29	XCS 50 29 SW
Ø 6.0	27	XCS 60 29 SW
Ø 7.0	27	XCS 70 29 SW

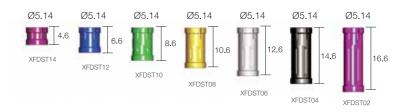
Round Bur

Diameter	L	Art. No.
Ø 2.0	33	XRB 20 33
Ø 3.0	33	XRB 30 33

^{*}Note: Drill speed 1,000rpm, 30~45N·cm with irrigation.

Stopper

Unit: mm, Scale 1:1/mm


Stopper | For first guide drill, second guide drill

Drilling Depth	L	Art. No.
14	4.6	XLDST 14
12	6.6	XLDST 12
10	8.6	XLDST 10
08	10.6	XLDST 08
06	12.6	XLDST 06
04	14.6	XLDST 04
02	16.6	XLDST 02

Stopper | For final drill 3435, 3835

L	Art. No.
4.6	XFDST 14
6.6	XFDST 12
8.6	XFDST 10
10.6	XFDST 08
12.6	XFDST 06
14.6	XFDST 04
100	XFDST 02
	10.6 12.6

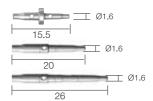
Stopper | For final drill 4335, 4835

Drilling Depth	L	Art. No.
14	4.6	XFDST 14L
12	6.6	XFDST 12L
10	8.6	XFDST 10L
08	10.6	XFDST 08L
06	12.6	XFDST 06L
04	14.6	XFDST 04L
02	16.6	XFDST 02L

Instrument

Unit: mm Scale 1:1

Fixture Adapter I Hex 2.5mm


Type	Length	Art. No.
	27	XFA 27 H
Handpiece	30	XFA 30 H
	32	XFA 32 H
	21	XFA 21 W
	24	XFA 24 W
Ratchet	26	XFA 26 W
	29	XFA 29 W
	32	XFA 32 W

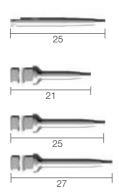
- · Use the handpiece adapter to transfer the implant fixture.
- NOTE: Ratchet Adapters are intended for final adjustments of the fixtures after placement of the fixture by the handpiece adapter. Ratchet adapters are not intended for transferring the fixture to or from the osteotomy site.
- To reduce the risk of accidental swallowing or aspiration, use with caution when transferring fixtures and its related restorative components

Parallel Pin | For first guide drill, second guide drill

Diameter	Art. No.
Ø1.6	XPP 162212
Ø1.6	XPP 162220T
Ø1.6	XPP 162226T

Path Pin

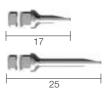
L	Art. No.
18.6	XMFPA2



Instrument

Unit: mm, Scale 1:1/mm

Hex Driver | Hex 1.28mm


L	Art. No.
25	XHD 25 H
21	XHD 21 W
25	XHD 25 W
27	XHD 27 W
26	XHD 26 T
30	XHD 30 T
	21 25 27 26

Slot Driver

Туре	Art. No.	
Ratchet	SDA 17 R	
	SDA 25 R	

Drill Extension

XDE

Driver | Manual

Туре	Art. No.
Manual	XHDHT

Instrument

Unit: mm

Adapter | For screw & ball abutment | Scale 1:1/mm

Туре	Art. No.
Hand-piece	XMAA1
Ratchet	XMA 21W

Adapter | For mini ball abutment | Scale 1:1/mm

Ratchet

XRCA1	
-------	--

Torque Wrench | Scale 1: 0.7 / mm

XNT	٦

Depth Gauge

\/		
А	ハコ	

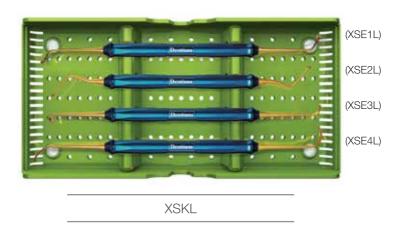
**Note: One side of Depth Gauge measures the osteotomy depth and the other side measures the gingival height from the top of the implant.

Tissue Punch | Scale 1:1/mm

※Punching size: Ø4.0

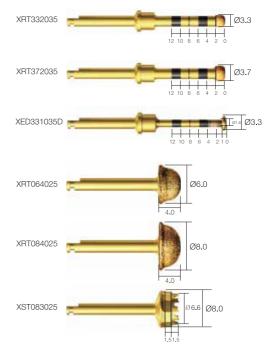
DASK [Dentium Advanced Sinus Kit]

Kit Contents


Sinus Bur Kit / Sinus Kit

Kit Contents

Sinus Kit

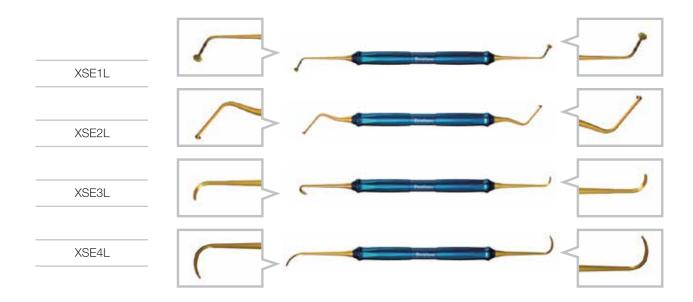

DASK / Sinus Bur Kit / Sinus Kit

Unit: mm

DASK Drill | Scale 1: 1.2 / mm

Туре	DASK Drill #	Art.No.
Crestal Approach	DASK Drill #1	XRT 33 2035
	DASK Drill #2	XRT 37 2035
	DASK Drill #3	XED 33 1035D
Lateral Approach	DASK Drill #4	XRT 06 4025
	DASK Drill #5	XRT 08 4025
	DASK Drill #6	XST 08 3025

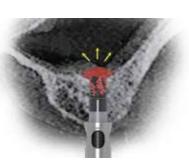
Note: Drill speed 800 to 1,200rpm, 30~45N·cm with irrigation.



Stopper | For XRT332035, XRT372035, XED331035D | Scale 1 : 1 / mm

Drilling Depth	L	Art.No.
08	10.6	XFDST 08
06	12.6	XFDST 06
04	14.6	XFDST 04
02	16.6	XFDST 02

Sinus Elevation Instrument | Scale 1: 0.45 / mm


DASK Simple

Crestal approach

Bone chip lifting & Compaction

Safe, easy and efficient surgery possible without perforation

Auto bone chip converging

Reverse direction cutting

- -Auto bone chip lifting
- -Side bone compaction

Sinus Lifting

Sinus Lifting

Round Instrument

Adjustable range: 4~10mm

Bone Spreader

DETAILED SPECIFICATION

Crestal Drill

35.0mm

**Recommended usage frequency 50 times

※ Recommended usage frequency 40 times

Art. No

SLD0428

SLD0440

L

28.0mm

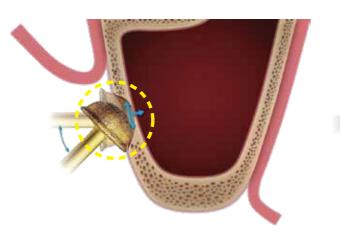
40.0mm

Diameter	L	Art. No
Ø 3.0	35.0mm	SRT3035AS
Ø 3.5	35.0mm	SRT3535AS

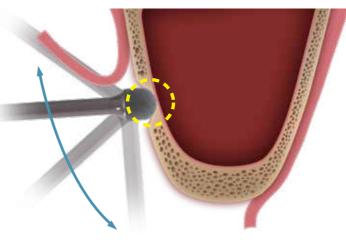
Lateral Drill

Bone Spreader

Diameter	L	Art. No
∅ 5.0	33.5mm	SSP33


DASK Simple

Lateral approach



Easy access for both vertical and lateral approach

1,000rpm 30~45N.cm with irrigation

DASK Ø6.0~8.0

Ridge Spreader Kit

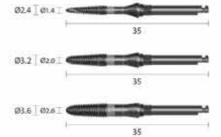
XRSK

Bone Chisel

XBC305013

Ratchet

XRCA1



Vs. Destian & RATCHET

[Unit: mm, Scale 0.6:1]

Ridge Spreader Drills

Diameter	L	Art No.
Ø1.4/Ø2.4	35	RS142435
Ø2.0 / Ø3.2	35	RS203235
Ø2.6 / Ø3.6	35	RS263635

Round Bur

Diameter	L	Art No.
Ø4.0	35	XRB4035


Ratchet Adapter

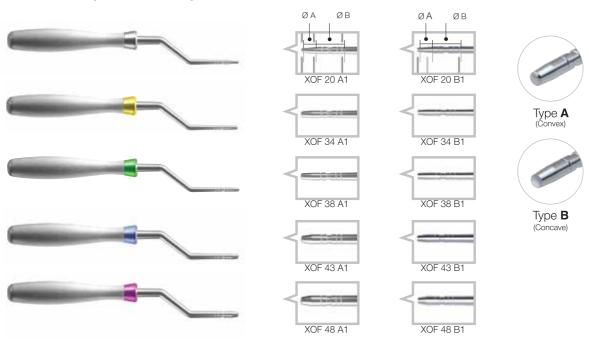
XRA3917

C C 17

Mini Saw

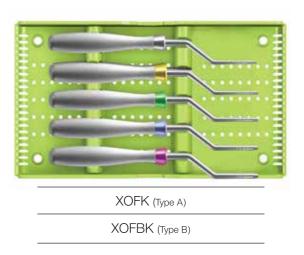
Diameter	L	Art No.
Ø8.0	25	XDS8025

Osteotome Kit


Unit: mm

Osteotome Kit

Osteotome compresses the bone laterally, providing denser bony interface rather than removing valuable bone from the surgical site.



Osteotome | Final drill type | Scale 1:0.4/mm

Osteotome Kit

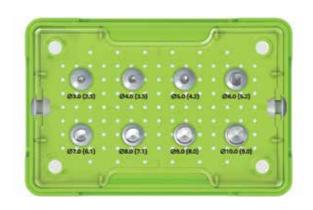
Type	Art.No.	ØA	ØB
	XOF 20 A1	Ø 1.7	Ø 2.8
	XOF 34 A 1	Ø 2.3	Ø 2.8
XOFK Type A	XOF 38 A 1	Ø 2.7	Ø 3.2
(Convex)	XOF 43 A 1	Ø 2.8	Ø3.8
	XOF 48 A 1	Ø 3.0	Ø 4.3
	XOF 20 B 1	Ø 1.7	Ø 2.8
VOEDK	XOF 34 B 1	Ø 2.3	Ø 2.8
XOFBK Type B	XOF 38 B 1	Ø 2.7	Ø 3.2
(Concave)	XOF 43 B 1	Ø 2.8	Ø3.8
	XOF 48 B 1	Ø 3.0	Ø 4.3

Trephine Kit

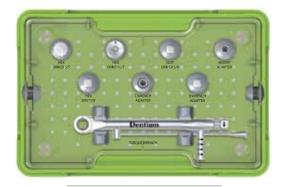
Unit: mm

Trephine Bur

- Excellent fine cutting
- Strong engagement when attaching the trephine to cortical bone
- Cut-outs facilitates ease of harvest retrieval
- 5 scale marks on the Trephine drill from 2mm to 10mm
- Easy harvesting


Trephine Bur | Scale 1: 0.5 / mm

Outer Diameter	Inner Diameter	Art. No.
Ø 3.0	Ø 2.3	XTP 24 03
Ø 4.0	Ø 3.3	XTP 34 04
Ø 5.0	Ø 4.2	XTP 44 05
Ø 6.0	Ø 5.2	XTP 54 06
Ø 7.0	Ø 6.1	XTP 64 07
Ø 8.0	Ø 7.1	XTP 74 08
Ø 9.0	Ø8.0	XTP 84 09
Ø10.0	Ø 9.0	XTP 94 10



Trephine Kit

XIT

Prosthetic Kit

XIP

Hex Driver L/T | Scale 1:1/mm

XHD **30** T

Mount Adapter | Scale 1 : 1 / mm

XMAA1

T/W Adapter | Scale 1:1/mm

XMA 21 W

Torque Wrench | Scale 1: 0.5 / mm

XNTW

Hex Driver S/T | Scale 1:1/mm

XHD **15**

Slot Driver | Scale 1:1/mm

SDA **25** R

Hex Driver T/W | Scale 1 : 1 / mm

XHD **25** W

Mini Ball Adapter | Scale 1:1/mm

IPST 21 W

Planning Kit

Unit: mm, Scale 1:1/mm

Kit Contents

Diameter Ø4.5 | Combi & Dual abutment

G/H	Art.No.
1.5	PDAB 45 15
2.5	PDAB 45 25
3.5	PDAB 45 35
4.5	PDAB 45 45
5.5	PDAB 45 55

G/H	Art.No.
1.5	PDAB 55 15
2.5	PDAB 55 25
3.5	PDAB 55 35
4.5	PDAB 55 45
5.5	PDAB 55 55

Diameter Ø5.5 | Combi & Dual abutment Diameter Ø6.5 | Combi & Dual abutment

G/H	Art.No.
1.5	PDAB 65 15
2.5	PDAB 65 25
3.5	PDAB 65 35
4.5	PDAB 65 45
5.5	PDAB 65 55

Angled 15° | Angled abutment

Diameter	G/H	Art.No.
Ø 4.5	2.0	PAAB 15 45 20
Ø 4.5	4.0	PAAB 15 45 40
Ø 5.5	2.0	PAAB 15 55 20
Ø 5.5	4.0	PAAB 15 55 40

Angled 25° | Angled abutment

D'	0/11	A .1 N l -
Diameter	G/H	Art.No.
Ø 4.5	2.0	PAAB 25 45 20
Ø 4.5	4.0	PAAB 25 45 40
Ø 5.5	2.0	PAAB 25 55 20
Ø 5.5	4.0	PAAB 25 55 40

Prosthetic and Laboratory Instrument

Unit: mm

Hex Driver | Hex 1.28 mm | Scale 1:1/mm

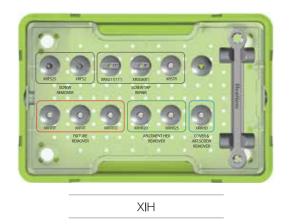
L	Art. No.
13	XHD 13
15	XHD 15
21	XHD 21
28	XHD 28

Reamer Guide for Combi/Dual Abutment | Scale 1:1/mm

Diameter	Art. No.
Ø 4.5	CRG 45 L
Ø 5.5	CRG 55 L
Ø 6.5	CRG 65 L

Reamer Guide for Screw Abutment | Scale 1:1/mm

Туре	Art. No.
Bridge	SRG B L
Single	SRG S L



Prosthetic and Laboratory Instrument

CRH	
Hand Wrench Scale 1 : 1 / mm XHW	
Reamer (Combi/Dual Abutment) Scale 1 : 1 / mm CRM	
Reamer (Screw Abutment) Scale 1 : 1 / mm	a com

Help Kit

Unit: mm

Cover & Abutment Screw Remover | Scale 1 : 1 / mm

Abutment Hex Remover | Scale 1:1/mm

L	Art. No
20	XRHR 20
25	XRHR 25

Screw Remover | Scale 1:1/mm

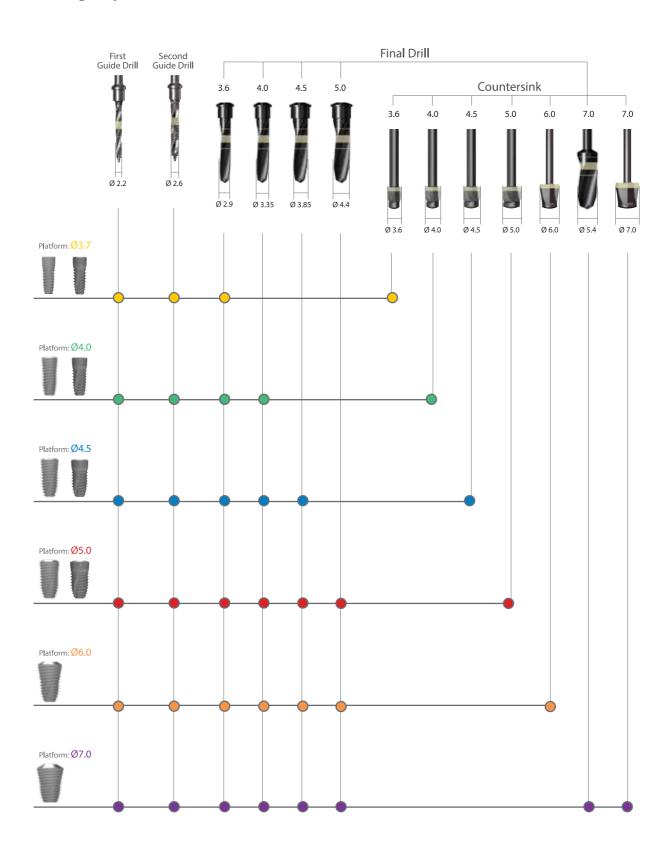
L	Art. No
25	XRFS 2S
33	XRFS2

Fixture Remover | Scale 1:1/mm

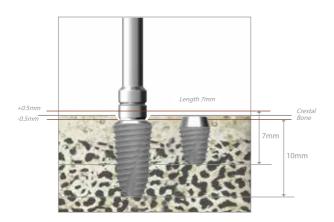
Type	Art. No
Remover	XRFRT
	XRFRTF
	XRFRTO
Wrench	XRFRW

Screw Tap Repair | Scale 1:1/mm

Type	Art. No
Tap	XRSTR
11° Guide	XRSG 11
8° Guide	XRSG 8


75

Surgical Drill Sequence I


Drilling Sequence Guide (Final Drill)

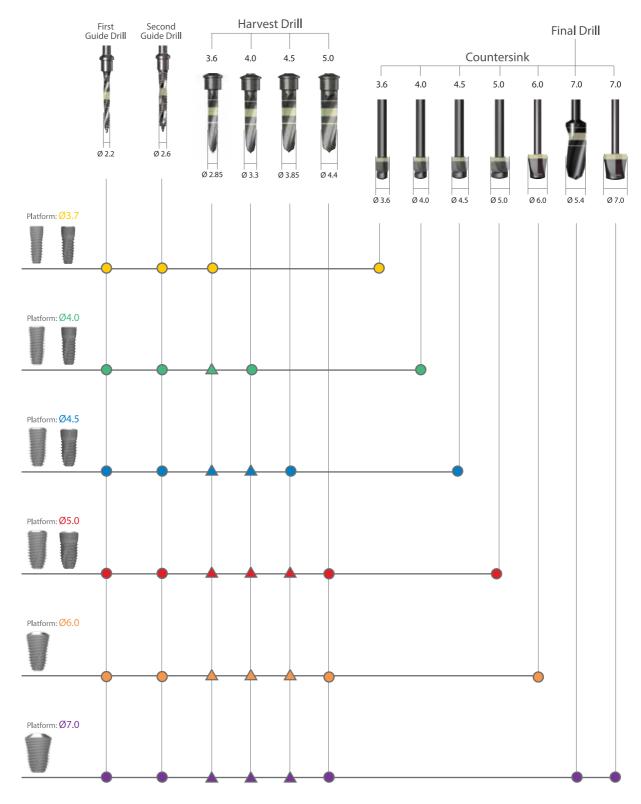
During Fixture Insertion, 30 ~ 45N⋅cm Torque at 20rpm is Recommended

- Countersink drill is used in cases with dense cortical bone.
- \bullet If the bone density is D1~D3, it is recommended to countersink after final drill.
- The actual diameter of the Countersink drill is 0.1mm larger than the fixture platform.

Determination of Fixture Top Level

Top level of fixture needs to be located 0.5mm below the marginal crestal bone level to minimize bone loss after implantation. However, only for the fixture of 7mm length, top level of fixture should be located 0.5mm above the marginal crestal bone level.

Depth Indication



- \bullet Use the depth gauge after first drill / First guide drill to check depth of drilling.
- Place the depth gauge against the wall of the osteotomy.

Surgical Drill Sequence II

Drilling Sequence Guide (Havrest Drill)

 \triangle : During the 4.3/4.8 fixture insertion into the bone density of D3~D4, the 3.4/3.8 harvest drilling process can be skipped.

Harvest Drill

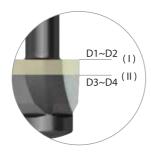
Simultaneous and effective autogenous bone collection during the final drilling procedure using a specially designed drill

- Sharp pointed tip design of the drill prevents drill chatter and helps guide drill path.
- Available drill stopper helps control drill depth for safe and efficient bone collection, especially in the buccal side of ridge.
- Recommended drill speed of less than 100rpm/50N·cm helps preserve the vital autogenous bone.
- Excellent clinical results may be achieved when harvested autogenous bone is combined with OSTEON™ II.

First / Second guide drill

1000rpm / 30~45N·m with irrigation

Harvest drill 30~100rpm / 30~50N·m without irrigation


Bone Collection in the Buccal Side of Ridge: 50~200rpm / 30~50N·cm

StopperLocking with drill stopper for bone collection


Drilling Depth Guide

Countersink Depth Guide

- Drilling depth of the countersink depends on the patient's bone quality.
- If the bone density is D1 \sim D2, it is recommended to drill up to the top line (1) of laser mark on the countersink.
- If the bone density is D3 \sim D4, it is recommended to drill up to the bottom line (II) of laser mark on the countersink.

Platform: Ø3.6 / Body: Ø3.4 First Second guide drill Guide drill O3.6 Ø3.7 FXS 3610 Ø3.7 0.5mm

Fixture Connection

Caution_When opening the fixture pack, hold the fixture container upward and engage the adapter into the fixture.

By hand-piece 20rpm / 35N·cm

By ratchet

Directions Using the Hand-piece / Ratchet Adapter

Hand-piece Adapter

Ratchet Adapter

The Hand-piece Adapter/Ratchet Adapter must be connected firmly together with the internal hex inside the fixture

Installation Procedure & Warnings

Cover Screw

By Hex Driver Healing Abutment

Cover Screw (CS36) connection

By Hex Driver

Healing Abutment connection

Healing Abutment (HAB402020L) connection in thin gingiva

Warnings _

Dental Implant surgery and restoration involve complex dental procedures. Appropriate and adequate training in proper technique is strongly recommended prior to use.

- Improper medical examination and/or treatment plan can result in implant failure and/or loss of supportive bone.
- Improper initial stability and/or excessive occlusal forces during healing period may lead to osseointergration failure.
- Excessive insertion torque may lead to mechanical failure or implant biologic failure due to bone compression and necrosis.
- When forces or loads are greater than its design, implant or abutment fracture could happen. Therefore clinicians should make careful decisions with regards to clinical treatment planning to minimize the risk of fracture. Appropriate implant quantity, occlusal interface and a nightguard are essential. Potential excessive loading conditions may include the following:
- 01 Inadequate number of implants are placed.
- 02 Implant width and/or length are inappropriate for a treatment site.
- 03 Prosthesis which has excessive cantilever length due to inadequate biomechanical design
- 04 Continuous occlusal force are generated by incomplete connection between implant and abutment and/or abutment screw loosening.
- 05 Direct Casting Abutment angles are greater than 30° from the vertical axis of the implant. Direct Abutments are not for angulation.
- 06 Occlusal interferences causing excessive lateral forces
- 07 Patient parafunctions such as bruxism
- 08 Inadequate dental laboratory casting procedures
- 09 Improper prosthesis fit
- 10 Trauma from patient habits or accidents
- 11 Excessive marginal bone loss caused by inadequate bone width and/or advanced periimplantitis

Surgical Kit Maintenance

Manual Cleaning and Sterilization Procedure

It is important to use protective clothing and face shield while cleaning contaminated instruments. Always wear protective glasses, mask, gloves, etc. for your safety.

Cleaning

- 1 Rinse instruments immediately after use under running tap water (<40°C) for a minimum of one (1) minute to remove all debris including extraneous body fluids, bone debris and tissue.
- 2 Soak all instruments immediately after rinsing in an enzymatic cleaning solution* for 10 to 20 minutes (Do not soak overnight).
 - * Follow manufacturer's instructions and observe recommended cleaning solution concentrations (enzymatic detergent with a pH level between 7-10 and temperature not to exceed 40°C). Do not use incompatible cleaning solutions to clean instruments.
- 3 For internal irrigation drills, use a 1mL syringe and a 25 gauge needle to clean the drill irrigation hole with a minimum of 0.2 mL of the prepared cleaning solution. Repeat this step two (2) more times for a total of three (3) rinses.
- 4 Scrub with a soft brush for a minimum of 1 (one) minute to remove any debris inside the drill irrigation hole.
- 5 Rinse the instruments under running tap water (<40°C) for a minimum of 1 minute. Use a 1mL syringe and a 25 gauge needle with a minimum of 0.2 mL of tap water to forcefully flush inside the drill irrigation hole. Repeat flushing of drill irrigation hole two (2) more times for a total of three (3) flushings.
- **6** Place instruments into an ultrasonic cleaner with neutral detergent**. Keep instruments inside the ultrasonic bath for 15 minutes using a frequency of 25-50 kHz. Ensure multiple instruments placed within the bath remain separated.
 - ** Follow manufacturer's instructions and observe recommended neutral detergent solution concentrations (neutral detergent with a pH level between 7-10 and temperature not to exceed 40°C). Do not use incompatible neutral detergent solutions to clean instruments.
- 7 Rinse instruments thoroughly with running tap water (<40°C) for a minimum of 1 (one) minute until all traces of neutral detergent solution are removed. Rinse inside drill irrigation hole using a 1mL syringe and a 25 gauge needle with a minimum of 0.2 mL of tap water. Repeat rinsing drill irrigation hole two (2) more times for a total of three (3) rinses
- **8** Gently wipe instruments with a soft lint-free cloth or place the instruments in a drying cabinet (60°C for less than 10 hours) until fully dry. Blow residual water from drill irrigation hole using a 1mL syringe and a 25 gauge needle. Visually inspect instruments in a well-lit area to ensure they are clean, dry and free of residue.
- 9 Clean instrument trays with a germicidal cleaner prior to returning instruments into Kit.
- 10 Always check for damage or corrosion after rinsing and drying.

Sterilization

Dentium recommends either the Pre-vacuum or Gravity autoclave methods for sterilization under the conditions described below. However, autoclave performance can affect the efficacy of this process. Healthcare facilities should validate their sterilization processes employing the actual equipment and operators that routinely sterilize instruments.

All autoclaves/sterilizers should be regularly validated, maintained and checked in accordance with EN 285/EN 13060, EN ISO 17665, ANSI AAMI ST79 to ensure compliance with these and related standards. Make sure packaging is suitable for steam sterilization.

Recommended Sterilization Parameters

Method-Moist Heat Sterilization	Pre-vacuum	Gravity	
Set Point Temperature	132 ℃	132 ℃	
Exposure time	4 minutes	30 minutes	
Drying time	20 minutes	40 minutes	

PROSTHESIS MANUAL

Prosthetic Introduction	on
Understanding the Implan	nt a

Types of Abutment	8
Dual Abutment	8
Combi Abutment	8
Dual Milling / Anged / Temporay /	
Metal-Casting Abutment	8
Screw Abutment / Angled Screw Abutment	9
Points to Consider in Abutment Selection	9
Minimum Height Requirement for SuperLine Prosthetic Abutment	ç

nd Prosthesis

Prosthetic Procedure 1

Abutment Level- Dual Abutment	94
Abutment Level- Combi Abutment	97

Prosthetic Procedure 2

Fixture Level [Pick-up Type]- Dual Abutment	100
Fixture Level [Transfer Type]- Dual Abutment	103
Fixture Level [Transfer Type]- Dual Milling Abutment	106
Fixture Level [Pick-up Type]- Angled Abutment	108
Fixture Level- Metal-Casting Abutment	111
Fixture Level [Pick-up Type]- Temporary Abutment	11:

Prosthetic Procedure 3

Abutment Level [Transfer Type]- Screw Abutment	11
--	----

117

Cementation Repair Method (SCRP)

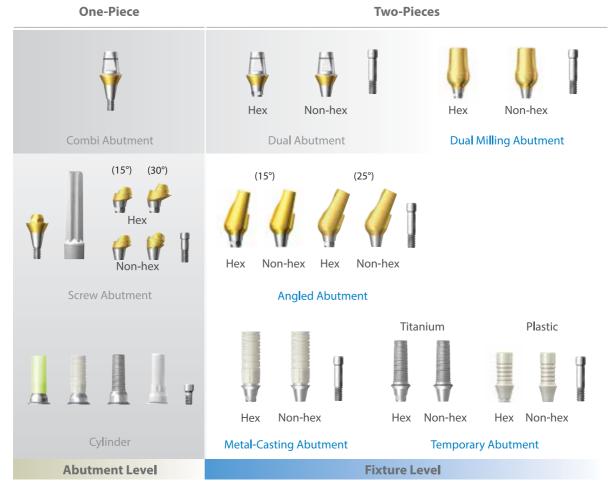
Prosthetic Procedure 4

i i obtilicate i i occuulte i		
Positioner		12
Ball Attachment		12
Magnetic Attachment		12

Understanding the Implant and Prosthesis

Biological Connection

- The tapered conical hex connection between implant and abutment interface provides hermetic sealing.
- The biological connection distributes the load to the fixture evenly. Therefore it may minimize bone loss.
- All implant diameters share the same internal connection. One abutment screw fits all abutments and fixtures.



Types of Abutment (Abutments are available in various diameters & gingival heights)

Dual Abutment Combi Abutment	 Abutment level
 Dual Abutment Dual Milling Abutment Angled Abutment (15°/25°) Metal-Casting Abutment Temporary Abutment (Plastic & Titanium) 	 Fixture level
• Screw Abutment • Angled Screw Abutment (15°/ 30°)	 Screw retained (Abutment level)
Positioner AttachmentBall AttachmentMagnetic Attachment	 For denture use

Types of Abutment

- Straight abutments are Dual and Combi Abutment.
- Depending on the insertion angle and position of the fixture, the Angled or / Metal Casting Abutment may be used.
- The Screw Abutment can be used when prosthesis retrieval is anticipated.

Selection Guideline

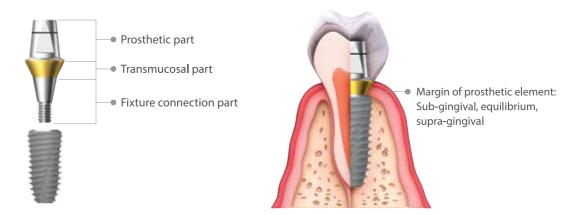
Ideal emergence profile for each tooth

Dual Abutment

- It is possible to take an impression at both fixture level and abutment level.

 (A Dual Abutment may be interchanged with a Combi Abutment)
- For abutment level impressions, the same prosthetic procedures apply to both Dual and Combi Abutments.
- For fixture level impressions, the abutment selection takes place on the master model.
- For fixture level impressions, a precise positioning jig for abutment may be required.
- Either hex or non-hex abutments may be used, according to operator's preference.
- * If a cement retained restoration requires retrieval, cutting a hole in the occlusal surface would allow access to the screw to permit removal.

Hex / Non-hex


	Hex	Non-hex	
Positioning Jig	Unnecessary	Required	
Radiograph	Required	Unnecessary	

Dual Abutment (Hex / Non-hex)

Diameter	G/H	Vertical Angle
Ø4.5	1.0mm, 1.5mm, 2.5mm, 3.5mm, 4.5mm, 5.5mm	5°
Ø5.5	1.5mm, 2.5mm, 3.5mm, 4.5mm, 5.5mm	6°
Ø6.5	1.5mm, 2.5mm, 3.5mm, 4.5mm, 5.5mm	7°

Combi Abutment

- The Combi Abutment is used when the implant position is optimal.
- If the abutment selection is made in the mouth, gauge the thickness of mucosa with the depth gauge to measure the gingival height thus allowing the appropriate abutment height.
- The Impression is taken with the snap cap.
- When using the Combi Abutment, it remains in the mouth after the impression is taken. (Do not remove or change its position)
- Tighten abutment screw to 25 35 N·cm. (retighten again before seating final prosthesis)
- * If the Combi Abutment is too long it can be adjusted 1.5mm to the bottom of the laser mark on the vertical stack of the abutment. The Combi Abutment has a short analog for the 1.5mm adjustment.
- * A resin jig can be made to record the reduction if reduced more the 1.5mm.

Combi Abutment Line Up

Diameter	G/H	Vertical Angle
Ø4.5	1.0mm, 1.5mm, 2.5mm, 3.5mm, 4.5mm, 5.5mm	5°
Ø5.5	1.5mm, 2.5mm, 3.5mm, 4.5mm, 5.5mm	6°
Ø6.5	1.5mm, 2.5mm, 3.5mm, 4.5mm, 5.5mm	7°

Dual Milling / Angled / Temporary / Metal-Casting Abutment

Dual Milling Abutment

- Impression is taken at fixture level.
- When using a non-hex abutment a precise seating jig should be used.
- Either hex or non-hex abutments may be used, according to operators preference.
- * If a cement retained restoration requires retrieval, cutting a hole in the occlusal surface would allow access to the screw for removal.

Angled Abutment

- The Angled Abutment is recommended when the restoration path of insertion is unfavorable in either anterior or posterior sites.
- Retention force can be increased through milling process.

Dual Milling / Angled / Temporary / / Metal-Casting Abutment

Metal-Casting Abutment

- Equivalent results for a fraction of the price
- Our highly affordable metal alloy replaces expensive gold to alleviate financial burden to all.

Temporary Abutment

- Temporary Abutments are available with titanium or plastic.
- The titanium abutment comes in both hex and non-hex with a gingival height of 1.0mm.
- The plastic abutment comes in diameters (Ø4.5, 5.5, 6.5) with a gingival height of 2.0mm.

Fixture Level Abutment (Hex / Non-hex)					
	Abutment	Diameter	G/H	Angle	
	res res	Ø4.0	1.0mm		
		Ø4.5	1.5mm		
Dual Milling		Ø5.5	1.5 / 2.5mm	Χ	
	Hex Non-hex	Ø6.5	1.5 / 2.5 / 3.5mm		
	TEX TOTT TEX	Ø7.5	2.5 / 3.5mm		
Angled	4444	Ø4.5	1.5mm 2.5mm 3.5mm	15° / 25°	
Angica	Hex Non-nex Hex Non-hex	Ø5.5	1.5mm 2.5mm 3.5mm	15° / 25°	
Metal-Casting Abutment	Hex Non-hex	Ø4.5	1.0mm	Х	
Ti-Temporary	Hex Non-hex	Ø4.5	1.0mm	X	
Plastic Temporary	Hex Non-hex	Ø4.5 Ø5.5 Ø6.5	2.0mm	Х	

Screw Abutment

Angled Screw Abutment

If prosthesis repair is anticipated, use of a Screw Abutment retained prosthesis enables easy retrieval.

- Useful for connecting multiple units or when there is a preference for a screw retained prosthesis.
- Useful when respective long axes of implants differ. Each side tapers by 30° and this permits up to 60° divergence between two abutments.
- Useful when the prognosis of an adjacent restoration is not ideal thus permitting easy retrieval and modification of the restoration.

Ti-Retaining Screw (1.8mm - body diameter)

- Can minimize screw loosening due to increased approximal space.
- Can endure various kinds of masticatory force.

Screw Abutment

Diameter	G/H	
Ø4.5	1.0mm, 1.5mm, 2.5mm, 3.5mm, 4.5mm, 5.5mm	
Ø5.5	1.5mm, 2.5mm, 3.5mm, 4.5mm, 5.5mm	

Angled Screw Abutment

Diameter	G/H	Angled
Ø4.5	1.0mm	15°
Ø5.5	1.5mm	30°

Points to Consider in Abutment Selection

Considerations in Selecting an Abutment

- Esthetic requirement
- Implant angulation
- Implant location
- Fixture installation depth (Gingival height)
- Interarch distance
- Prosthesis type
- Dentist & dental technician's preference

Impression of Implant

According to the case the impression can be taken at abutment or fixture level.

Fixture Level

- 1. Dual Abutment
- 2. Dual Milling Abutment
- 3. Angled Abutment (15° / 25°)
- 4. Metal-Casting Abutment
- 5. Temporary Abutment (Plastic & Titanium)

Abutment Level

- 1. Dual Abutment
- 2. Combi Abutment
- 3. Screw Abutment
- 4. Angled Screw Abutment (15° / 30°)

Abutment Impression Recommendation

Dual Abutment	Cementation type, screw-cementation type	Fixture level impression or abutment level impression
Combi Abutment	Cementation type	Abutment level impression
Angled Abutment	Cementation type, screw-cementation type	Fixture level impression
Screw Abutment	Screw retained type	Abutment level impression
Metal-Casting Abutment	Cementation type, screw-cementation type	Fixture level impression
Dual Milling Abutment	Cementation type, screw-cementation type	Fixture level impression

Minimum Height Requirement for SuperLine Prosthetic Abutment

* Diagram above indicates the minimum height required for SuperLine prosthetic abutment.

Maximum Amount of Reduction Allotted for SuperLine

Combi Abutment

Eliminate 3.0mm from the top level Combi Abutment (laser marking:1.5mm)
 Caution _ Damage may be caused to the screw if the abutment is reduced to less than 2.5mm above the gingival height.

Dual Abutment

• Preparation of the abutment top is possible as follows.

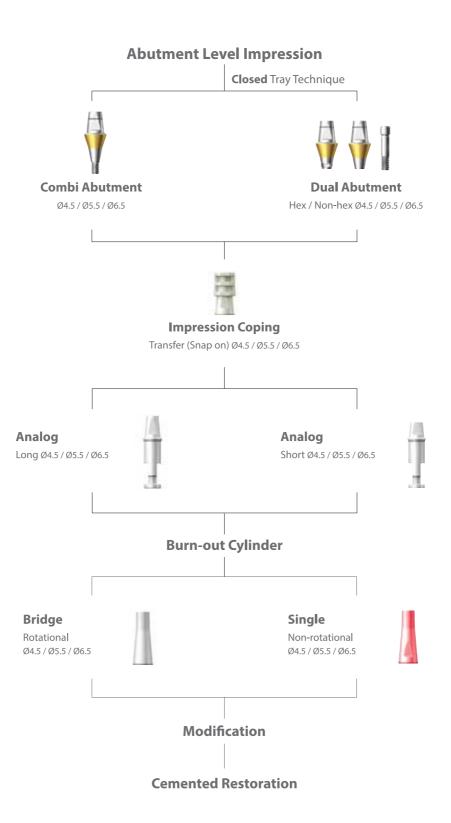
Gingival Height	Preparable Amount
1.5mm	2.0
2.5mm	3.0
3.5mm	4.0
4.5mm	5.0
5.5mm	6.0

Angled Abutment & Dual Milling Abutment

• Required minimum abutment height: at least 5.0mm above the Fixture top

Metal-Casting Abutment

• Required minimum abutment height: at least 5.5mm above the Fixture top.


Screw Abutment

• The Screw Abutment cannot be modified, however the Casting Abutment can be modified for interarch distance, taking reduction into consideration of the height of the retaining screw.

Prosthetic Procedure 1

Impression Technique and Restoration Selection

Dual / Combi Abutment

Abutment Level- Dual Abutment

[Multiple Units]

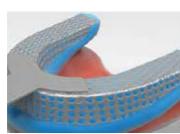
Clinical Procedure

Chairside

Remove the Healing Abutment after formation of soft tissue.

Dual Abutment (Hex / Non-hex)

Select the Dual Abutment by diameter and gingival height.


Retighten after 15 minutes Tighten it to 25~30N·cm.

Seat the plastic cap over the abutment.

Injection of impression material

Impression taking

Cap comes off into the impression

Fabrication of provisional restoration or insertion of comfort cap

Abutment Level- Dual Abutment

[Multiple Units]

Laboratory Procedure

LabSide

Fabrication of master cast

Seat burn-out cylinder securely into analog.

Consider distance of opposing teeth, Modify burn-out cylinder to its proper heigh if needed.

Fabrication of burn-out cylinder and plastic bar in preparation for wax-up

Completion of wax-up

Fabrication of metal framework

Abutment Level- Dual Abutment

[Multiple Units]

Trimming of the extended margin by using the rubber wheel

Metal framework and reamer

Reamer is used to eliminate "Lip" caused by 'snap-on' mechanism.

Metal framework after removal of "Lip"

Metal framework

Porcelain build-up

SCRP: Once an access hole has been created, it can be converted to a SCRP (Screw & Cemented Retained Prosthesis).

Final prosthesis

Access hole is made when burn-out cylinder is used to do the wax-up.

Extended margin around the metal framework due to 'snap-on' mechanism

Trim extended margin by rubber wheel

Metal framework and reamer

Eliminate the lip remnant caused by 'snap-on' mechanism by reamer.

Metal framework after removal of "Lip"

Metal framework

Final prosthesis

Abutment Level- Combi Abutment

[Multiple Units]

Chairside

Second stage surgery (uncovering)

Following the 2nd stage surgery, soft tissue is healed around the Healing Abutment. Healing Abutment should be selected according to the size of abutment.

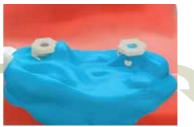

Choose abutment with gingival height then tighten it to 25~30N·cm. Re tighten after 15 minutes.

Image of combi Impression coping and abutment assembly

Snap-on the plastic impression coping with the same sized diameter abutment

Impression taking
Injection of impression material

Impression taking

Inner-surface of impression

Fabrication of provisional restoration or insertion of comfort cap

LabSide

Seating of Lab analog

Confirm analog is secured in snap cap

Soft tissue model

Fabrication of master cast

Placement of burn-out cylinder

Consider the distance of opposing teeth, modify burn-out cylinders to its proper height.

Abutment Level- Combi Abutment

[Multiple Units]

Connect the plastic bar in the middle of the trimmed burn-out cylinders to help support the resin pattern. Wax pattern may have shrinkage.

Wax-up

Completed framework

Trimming the extended margin with a rubber wheel

Metal framework and reamer

Removal of lip remnant with reamer caused by 'snap-on' mechanism

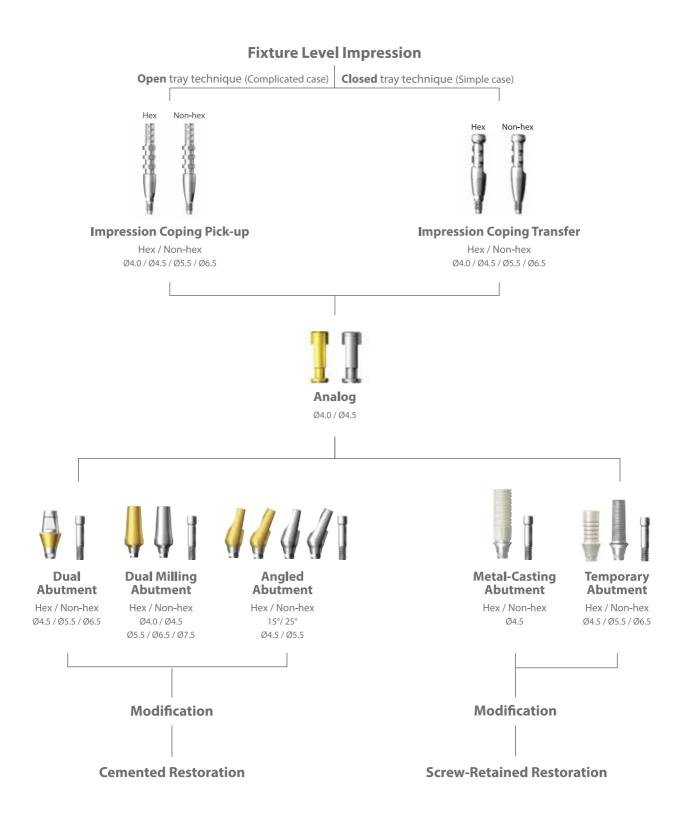
Metal Framework after removal of "Lip"

Metal coping adaptation (Completed framework)

Porcelain build-up final prosthesis

Chairside

* If the combi analog is trimmed due to limited inter-occlusal space in the lab, make a reduction jig. Then a slight modify of the abutment in the oral cavity may be necessary to the height of the jig.



Insertion of final prosthesis and occlusal adjustment

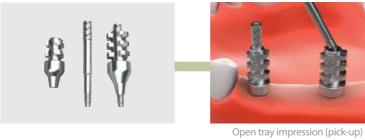
Prosthetic Procedure 2

Impression Technique and Restoration Selection

Dual / Milling / Angled / Metal-Casting / Temporary (Plastic & Ti) Abutment

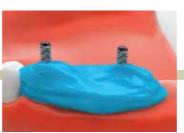
Fixture Level [Pick-up Type]- Dual Abutment

[Multiple Units]



Healing Abutment

Impression Coping Pick-up Type


Fixture Level Impression Open Tray

Chairside

Apply adhesive on open tray. (Individual tray)

Injecting the impression material

Impression taking

Remove the screw before removing the impression tray.

Inner surface of impression

Fixture Level [Pick-up Type]- Dual Abutment

[Multiple Units]

Laboratory Procedure

Labside

Connect lab analog with impression coping.

Soft tissue model

Fabrication of master cast

Connect a proper abutment

After surveying abutment milling is possible if necessary.

Fabrication of positioning jig

Fabrication of the cap with pattern resin

Wax-up

Metal framework

Fixture Level [Pick-up Type]- Dual Abutment

[Multiple Units]

Chairside

Final prosthesis

Use positioning jig to transfer the abutment in model to oral cavity then tighten it to 25~30N·cm.

Retighten after 15 minutes.

Insertion of the final prosthesis and occlusal adjustment

SCRP-Labside

Formation of access hole with long transfer coping screw

Wax-up

Metal framework

SCRP- Chairside

Final prosthesis

Use positioning jig to transfer the abutment in model to oral cavity then tighten it to 25~30N·cm.
Retighten after 15 minutes.

Insertion of final prosthesis and adjustment of occlusion

^{*} In the process of seating the prosthesis, the prosthesis can be rebounded by gingival tissue. In this case it is advised to apply occlusal load on the prosthesis for $10\sim15$ minutes.

^{*} In the process of seating the prosthesis, the prosthesis can be rebounded by gingival tissue. In this case it is advised to apply occlusal load on the prosthesis for 10~15 minutes.

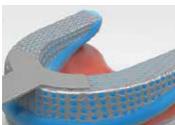
Fixture Level [Transfer Type]- Dual Abutment

[Multiple Units]

Clinical Procedure

Chairside

Seating the impression coping which has the same diameter as
Healing Abutment



Healing Abutment

Impression of fixture level (No x-ray necessary for confirmation)

Injection of impression material

Impression taking

Inner surface of the impression

Fixture Level [Transfer Type]- Dual Abutment

[Multiple Units]

Laboratory Procedure

Labside

Impression coping and analog connection. And insert impression coping into the impression.

Make sure the impression coping is fully seated into the impression

Soft tissue model

Fabrication of master cast

Soft tissue condition after the of impression coping

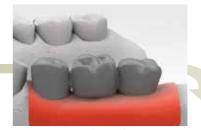
Measuring gingival height with depth gauge

Selection of Dual Abutment of proper diameter and gingival height

Verify by surveying the selected abutment. (Milling of the abutment is possible if necessary)

Fabrication of positioning jig

Fixture Level [Transfer Type]- Dual Abutment


[Multiple Units]

Seat the cap with pattern resin

Completion of wax-up

Completion of metal framework

Final prosthesis built up on the framework with porcelain

Chairside

Use positioning jig to transfer the abutment in model to oral cavity then tighten it to 25~30N·cm.
Retighten after 15 minutes.

Insertion of final prosthesis, adjust occlusion place lab wax into opening of abutment to protect screw head then cement.

SCRP-Labside

Make an access hole in the resin cap by using the long open tray transfer screw.

Completed wax-up

Metal framework

SCRP-Chairside

Final prosthesis

Use positioning jig to transfer the abutment in model to oral cavity then tighten it to 25~30N·cm.
Retighten after 15 minutes.

Insertion of final prosthesis and occlusal adjustment. Place wax into opening of the abutment prior to sealing with composite.

^{*} In the process of seating the prosthesis, the prosthesis can be rebounded by gingival tissue. In this case it is advised to apply occlusal load on the prosthesis for 10~15 minutes.

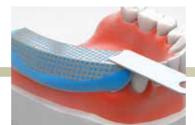
Fixture Level [Transfer Type]- Dual Milling Abutment

[Single Unit]

Impression Coping Transfer Type

Fixture Level Impression

Chairside


Placement of Healing Abutment

Placement of impression coping with the same diameter as Healing Abutment

Injecting of impression material

Impression taking

Impression coping formation on the inside of impression is observable. (Traces of impression coping on the inner surface of impression)

Laboratory Procedure

Lab Analog Connection

Dual Milling Abutment

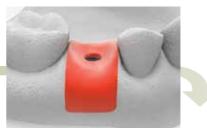
Modification

Crown Wax-up

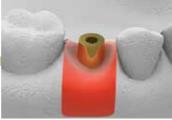
Final Restoration Cementation

Fixture Level [Transfer Type]- Dual Milling Abutment

[Single Unit]

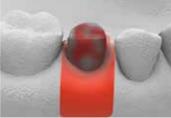

Labside

Impression coping and analog connection. And insert impression coping into the impression.


Soft tissue model

Master cast

Selection of appropriate Dual Milling
Abutment


Abutment after milling process

Fabrication of positioning jig

Fabrication of pattern resin cap

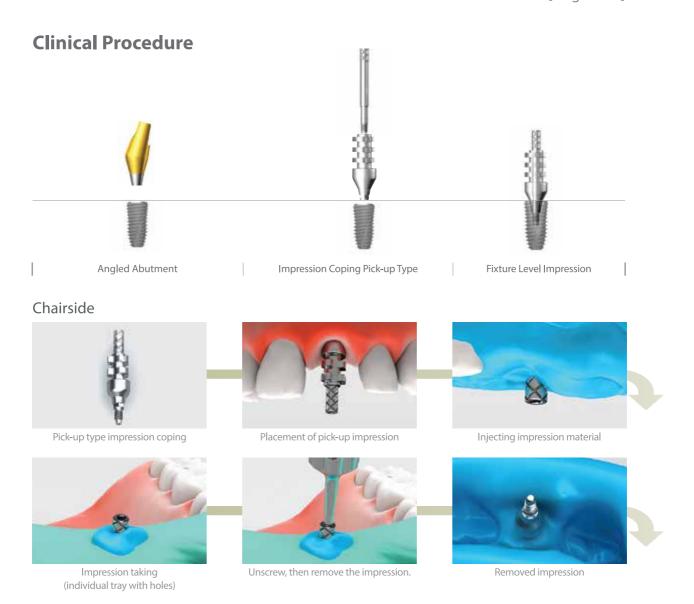
Completion of wax-up

 $Metal\, framework$

Chairside

Final prosthesis

Use positioning jig to transfer the abutment in model to oral cavity then tighten it to 25~30N·cm.
Retighten after 15 minutes.



Insertion of final prosthesis and occlusal adjustment

^{*} In the process of seating the prosthesis, the prosthesis can be rebounded by gingival tissue. In this case it is advised to apply acclusal load on the prosthesis for 10~15 minutes.

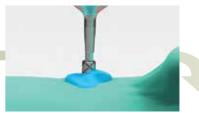
Fixture Level [Pick-up Type]- Angled Abutment

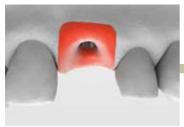
[Single Unit]

Laboratory Procedure


Fixture Level [Pick-up Type]- Angled Abutment

[Single Unit]

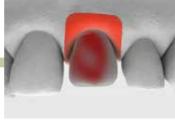

Labside


Impression coping with analog connections

Soft tissue formation and fabrication of master model

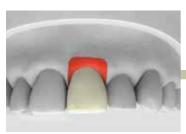
Unscrew then separate impression from the model.

Master cast


Select an Angled Abutment.

Modification of Angled Abutment & fabrication of positioning jig

Fabrication of pattern resin cap



Wax-up

Metal or zirconia framework

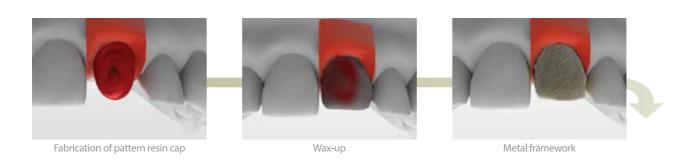
Chairside

Final prosthesis

Insertion of the Angled Abutment using positioning jig

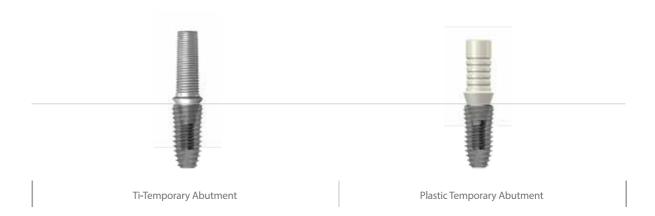
Insertion of final prosthesis and occlusal adjustment

Fixture Level- Metal-Casting Abutment


[Single Unit]

Laboratory Procedure

Labside



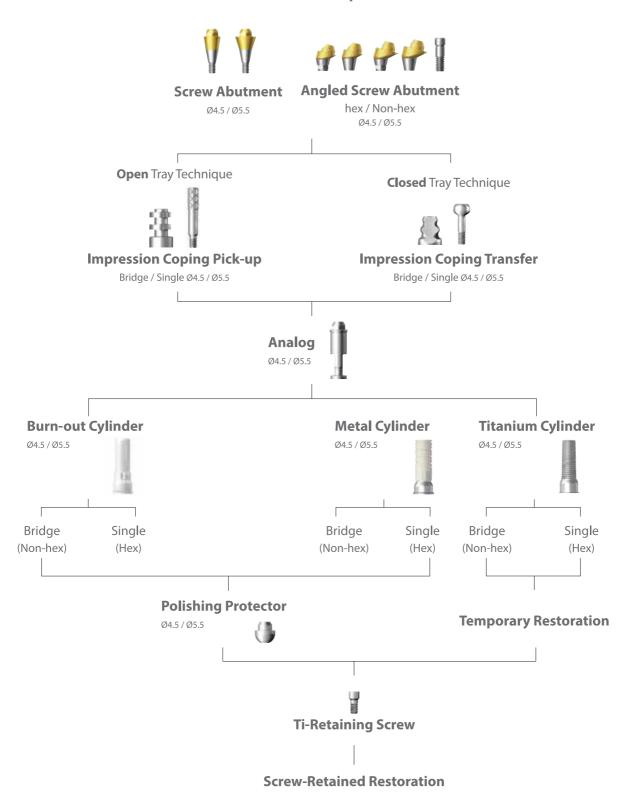
Fixture Level [Pick-up Type]- Temporary Abutment

[Single Unit]

<Using Ti Abutment>

Considering the opposing teeth before seating the Temporary Abutment, trim off the abutment as needed and complete the Temporary Abutment prosthesis with direct resin.

<Using Plastic Abutment>

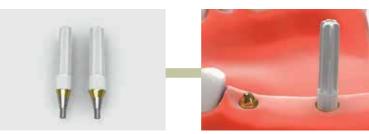


Prosthetic Procedure 3

Impression Technique and Restoration Selection

Screw Abutment

Abutment Level Impression


Abutment Level [Transfer Type]- Screw Abutment

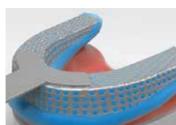
[Multiple Units]

Clinical Procedure

Chairside

Select and seat an appropriate Screw Abutment with delivery holder.

Tighten it to 25~30N·cm. Retighten after 15 minutes with Screw Abutment adaptor.


Screw Abutment transfer copings (abutment level)

Placement of impression copings

Injecting impression material

Impression taking

Inner-surface of impression

Placement of comfort cap on Screw Abutment

Abutment Level [Transfer Type]- Screw Abutment

[Multiple Units]

Laboratory Procedure

Labside

Connecting impression coping with Screw Abutment analog

Position impression coping and analog assembly in the exact location of the impression

Soft tissue model

Fabrication of master cast

Removal of impression coping

Connect the Screw Abutment cylinder then tighten it with ti-retaining screw.

Consider the distance with opposing teeth, then trim cylinder to its appropriate height.

Connect the plastic bar in the middle of trimmed burn-out cylinders to help support the wax pattern. Wax pattern may have shrinkage.

Wax-up

Abutment Level [Transfer Type]- Screw Abutment

[Multiple Units]

Metal framework

Removal of lip remnant in the interior of metal framework by using reamer

Completion of metal framework

Completion of porcelain

Insertion of final prosthesis and occlusal adjustment. Tighten with ti-retaining screw (10N-cm).

Cementation Repair Method (SCRP)

[Screw & Cement Retained Prosthesis]

In Light of Implant Prosthesis:

- A screw type restoration helps to simplify prosthesis repair, including insertion and removal of the prosthesis if necessary.
- Cement type restoration tend to have a stable occlusion and may enhance the adaptability. However the weak point is that it cannot be removed after permanent cementation.
- A Dual Abutment can be cemented or screw retained.
- Combi Abutments are cement retained and no occlusal hole is necessary.

In Case of Screw Loosening or when Prosthesis Repair is Needed

In case of the following: screw loosing Prosthesis repair

In order to unscrew, form access hole on the occlusal surface using bur.

Unscrew, then remove the prosthesis from the oral cavity.

Both cemented prosthesis and abutment are removed.

Finish the repair then seat it inside the oral cavity.

Tighten the prosthesis with 25~30N·cm by a screw driver.

* It is recommended that the abutment screw is retightened after 15 minutes.

Fill the access hole with cotton.

Fill the access hole with resin.

Final prosthesis

Cementation Repair Method (SCRP)

[Screw & Cement Retained Prosthesis]

Prosthesis Separation from Abutment due to Cement Loss

Remove the screw completely with screw driver and remove prosthesis from the patient's mouth.

Apply cement to the prosthesis.

Place it back into the patient's mouth.

After the cement setting, unscrew and remove the excessive cement.

Finish the repair and seat it inside the patient's mouth.

Tighten the prosthesis with 25~30N·cm with a screw driver.

Adding to the Interproximal Contact Surface due to Prosthesis Loosening

Prosthesis loosening due to contact loosening

Form access hole using bur

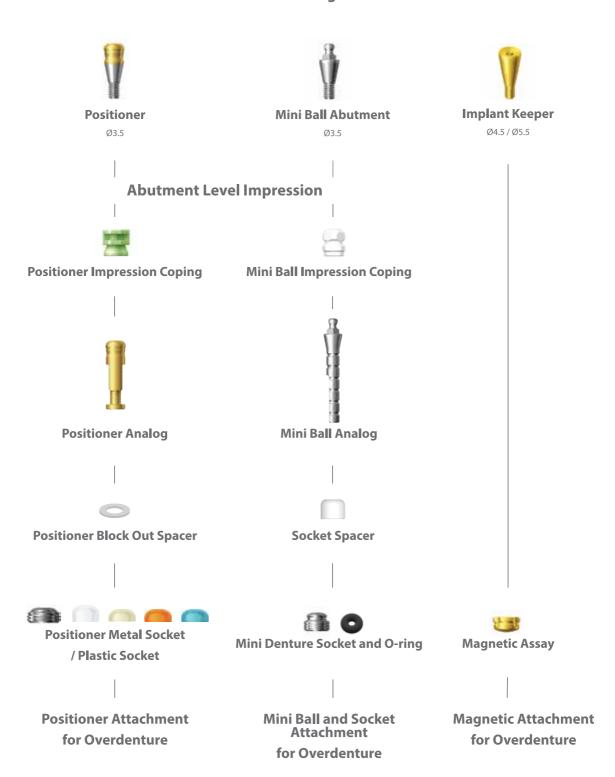
Unscrew, then remove the cemented prosthesis with abutment in the oral cavity.

Contact adding with resin on the prepared under space.

Insert the prosthesis in the oral cavity and screw it in. Afterwards, perform light curing,

then polish the contact area. * It is recommended that the abutment screw is retightened after 15 minutes.

Position the prosthesis in the mouth and tighten the screw with 25~30N·cm, then fill up the access hole.



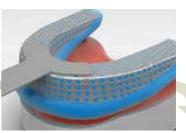
Prosthetic Procedure 4

Impression Technique and Restoration Type

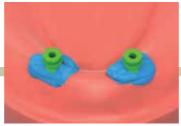
Overdenture Procedure

Positioner / Mini Ball / Magnetic Attachment

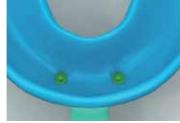
Positioner


Chairside

Connect the Positioner Abutment onto the fixture.


Affix the impression coping on the Positioner Abutment.

Take Impression for the production of individual tray.


Produce the individual tray for denture impression.

After connecting the Positioner Abutment and the impression coping together, apply the impression material.

Take the final impression with the prepared individual tray.

After the impression material is set, discard the individual tray.

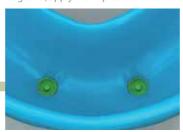
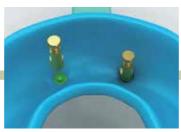



Image of the set final impression (with impression coping)

Labside

Positioner Analog

Insert the Positioner Analog into the embedded impression coping.

Create the master model.

"Block out" procedure to achieve the space required for the metal socket.

Fabrication of denture with conventional method

Positioner

Case 1

Secure spaces for the female sockets.

Chairside

Place the "block out spacer" on the Positioner Abutment in the patient's mouth.

Connect the metal socket onto the Positioner Abutment.

Apply a small amount of resin into the space created for the metal socket.

Position the denture in the mouth and wait until the resin is completely set.

Remove the white plastic socket (100gf) using the positioner tool and assemble with the regular plastic socket giving the desired retention force (300, 500 or 1000gf).

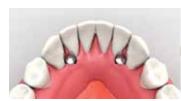
Remove the denture after the resin is fully set. Image of the denture with the metal socket.

Remove the block out spacer from the patient's mouth.

After polishing, the overdenture is completed.

Case 2

Create holes for the placement of the metal sockets.


Chairside

Place the "block out spacer" on the Positioner Abutment in the intraoral.

Connect the metal socket onto the Positioner Abutment.

Examine the interference between inner surface of the holes and the female sockets.

Apply the resin into the holes and wait until it is completely set.

Remove the white plastic socket (100gf) using the Positioner tool and assemble with the regular plastic socket giving the desired retention force (300, 500 or 1000gf).

Apply additional resin around the metal socket where there is a shortage of resin.

Apply resin around the metal socket.

After polishing, the overdenture is completed.

Ball Attachment

Case 1

Secure spaces for the female sockets.

Chairside

Connect the female sockets to the Mini Ball Abutments in the intraoral.

Apply small amount of the resin into the secured area.

Position the denture in the mouth and wait until the resin is completely set.

Female sockets are placed in the denture.

After polishing, the overdenture is completed.

Case 2

Create holes for the placement of the female sockets.

Chairside

Connect the female sockets to the Mini Ball Abutments in the intraoral.

Examine the interference between inner surface of the holes and the female sockets.

Apply the resin into the holes and wait until it is completely set.

Place the female sockets.

Apply resin around the female sockets.

After polishing, the overdenture is completed.

Magnetic Attachment

Chairside

After Healing Abutment removal

Connect implant keeper with fixture and tighten it with 25~30N·cm.

Implant keepers connected with the fixtures

Position the magnetic assay on the implant keeper.

Secure spaces for the magnetic assays.

Examine the interference between inner divot of the denture and the magnets.

Case 1

Apply resin on the divot of the denture's inner surface.

Position the denture into the mouth and wait until the resin is completely set.

Magnetic assays are placed in the

Apply some of resin around the magnetic assays.

After the resin is completely set, remove excess. After polishing, the overdenture is completed.

Magnetic Attachment

Case 2

Create holes for the placement of the magnets.

Examine the interference between inner surface of the holes and the magnets.

Position the denture in the mouth and apply small amount of resin into the hole.

Wait until the resin is completely set.

After setting, remove denture from the mouth.

Add the resin around the magnets.

After polishing, the overdenture is completed.

DENTIUM LONG-TERM CLINICAL DATA

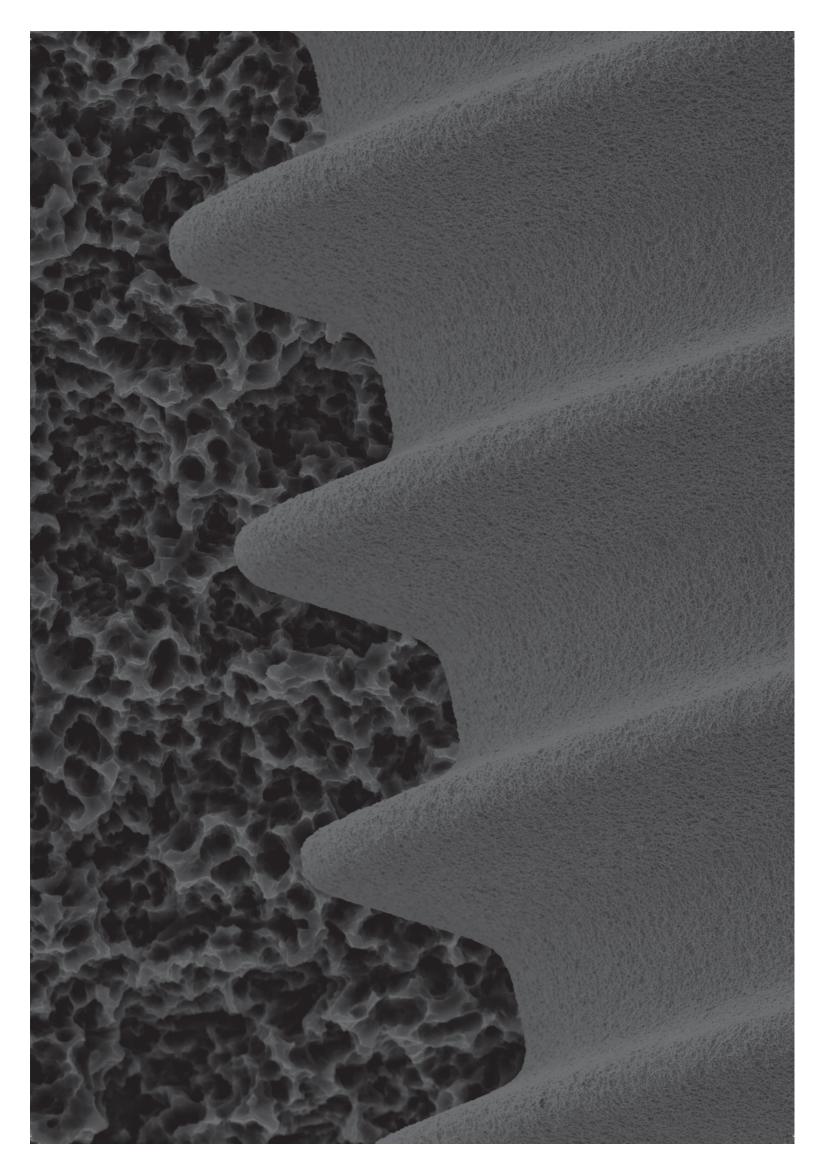
2002 2003 2004 2005 2006 2007 2008

2002. 05. 17 Pre-op

2002. 09. 04 Post-op

2003. 03. 15 Final prosthesis

Dentium


2008. 04. 14 5 years

2013, 12, 05 11 years

OVER A **DECADE** OF COMMITMENT TO THE **BEST PRODUCTS** FOR DENTISTS AND PATIENTS

New SuperLine $\, \mathbb{I} \,$ **Product Catalog**

Dentium Specifications are subject to change without any notice.
Some products listed in this catalog are not available in the market due to pending approval.

HEAD OFFICE INDIA

The Palm Springs, 8th Floor, Unit No 04, 05, 06, Palm Spring Plaza, Golf Course Rd, Sector 54, Gurugram, Haryana 122002 HOMEPAGE

dentium.co.in HEAD OFFICE

174-10, #821 (Gangnam Ace Tower), Jagok-ro, Gangnam-gu, Seoul, Republic of Korea Tel +82-2-555-3750 Fax +82-2-6211-4681 HOMEPAGE www.dentium.co.kr

